Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 3, pp 755–760 | Cite as

Influence of initial casting temperature and dosage of fly ash on hydration heat evolution of concrete under adiabatic condition

  • J. C. Wang
  • P. Y. Yan
Article

Abstract

The calorimetric data of binders containing pure Portland cement, 20% fly ash, 20% slag and 10% silica fume respectively are determined at different initial casting temperatures using an adiabatic calorimeter to measure the adiabatic temperature rising of concrete. The calorimetric data of binders with different dosages of fly ash at two water binder ratios (w/b) are determined, too. Elevation of initial casting temperature decreases the heat evolution of binder, enhances the heat evolution rate of binder and increases the heat evolution rate of binder at early age. The dosage of fly ash in concrete has different effects on the heat evolution of binder with different w/b. At high w/b ratio the heat evolution of binder decreases when dosage of fly ash increases. At low w/b ratio the heat evolution of binders increases when dosage of fly ash increases from 0 to 40% of total binder quantity. The heat evolution of binder decreases after the dosage of fly ash over 40%. An appropriate dosage of fly ash in binder benefits the performance of concrete at low w/b ratio.

Keywords

adiabatic condition fly ash hydration heat initial casting temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1 R. Springenschmid, Thermal Cracking in Concrete at Early Age, E SPON, 1995.Google Scholar
  2. 2.
    2 ACI Committee 116 R-85, Cement and concrete terminology, ACI Manual of Concrete Practice, American Concrete Institute Pubs., USA 1989.Google Scholar
  3. 3.
    Ma, W, Sample, D, Martin, R, Brown, PW 1994Cem. Concr. Aggr.1693CrossRefGoogle Scholar
  4. 4.
    Cabrea, JG, Atiş, CD 1999Proceedings of Gramado Conference, Brasil, SP-186American Concrete Institute Pubs.USA21Google Scholar
  5. 5.
    Bamforth, PB 1980Proc. Inst. Civil Eng.69777Google Scholar
  6. 6.
    Giergiczny, Z 2005J. Therm. Anal. Cal.761Google Scholar
  7. 7.
    Thomas, MDA, Mukherjee, PK, Sato, JA, Everitt, MF 1995Proceedings of Milwaukee Conference, SP-153American Concrete Institute Pubs.USA81Google Scholar
  8. 8.
    Fournier, B, Langley, WS, Malhotra, VM 1995Proceedings of Milwaukee Conference, SP-153American Concrete Institute Pubs.USA561Google Scholar
  9. 9.
    Yan, PY, Zheng, F, Xu, ZQ 2003J. Therm. Anal. Cal.74201CrossRefGoogle Scholar
  10. 10.
    Farry, ALA, Bijen, JM, Haan, YM 1989Cem. Concr.Res.19235CrossRefGoogle Scholar
  11. 11.
    H. F. W. Taylor, Cement Chemistry, 2nd Edition, Thomas Telford Services Ltd., 1997.Google Scholar
  12. 12.
    Schindler, AK, Folliard, KJ 2005ACI Mater. J.10224Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Civil Engineering, Tsinghua UniversityBeijingP.R. China

Personalised recommendations