Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 2, pp 531–536 | Cite as

Study on the non-isothermal kinetics of decomposition of 4Na2SO4·2H2O2·NaCl

  • Z. Hong-Kun
  • T. Cao
  • Zh. Dao-Sen
  • X. Wen-Lin
  • W. Ya-Qong
  • Q. Qi-Shu
Article

Abstract

The non-isothermal decomposition kinetics of 4Na2SO4·2H2O2·NaCl have been investigated by simultaneous TG-DSC in nitrogen atmosphere and in air. The decomposition processes undergo a single step reaction. The multivariate nonlinear regression technique is used to distinguish kinetic model of 4Na2SO4·2H2O2·NaCl. Results indicate that the reaction type Cn can well describe the decomposition process, the decomposition mechanism is n-dimensional autocatalysis. The kinetic parameters, n, A and E are obtained via multivariate nonlinear regression. The n th-order with autocatalysis model is used to simulate the thermal decomposition of 4Na2SO4·2H2O2·NaCl under isothermal conditions at various temperatures. The flow rate of gas has little effect on the decomposition of 4Na2SO4·2H2O2·NaCl.

Keywords

kinetics multivariate nonlinear regression sodium sulfate-hydrogen peroxide-sodium chloride thermal decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Adams, R. G. Pritchard and J. M. Thomas, J. Chem. Soc., Chem. Commun., 3 (1978) 288.CrossRefGoogle Scholar
  2. 2.
    J. M. Adams, R. G. Pritchard and J. M. Thomas, Acta Crystallogr. A, 34 (1978) 1428.CrossRefGoogle Scholar
  3. 3.
    Kao Soap Co. Ltd. and Nippon Peroxide Co. Ltd. DE 2,530,539, 1975-07-09.Google Scholar
  4. 4.
    Y. Ito and T. Mashiko, UK.1,480,884, 1977-07-27.Google Scholar
  5. 5.
    Y. Nakagawa, S. Sugiura and K. Matsunaga, US 3,979,312, 1976-09-07.Google Scholar
  6. 6.
    Y. Nakagawa, S. Sugiura and K. Matsunaga, US 3,979,313, 1976-09-07.Google Scholar
  7. 7.
    Y. Ito and T. Mashiko, US 4,005,182, 1977-01-25.Google Scholar
  8. 8.
    W. Doetsch, H. Honig and R. Siegel, US 4, 400, 367, 1983-08-23.Google Scholar
  9. 9.
    Y. Itou, JP60-051611, 1985-08-31.Google Scholar
  10. 10.
    B. J. Forner and P. R. Artlgas, EP1258454A1, 2002-11-20.Google Scholar
  11. 11.
    B. J. Forner and P. R. Artlgas, EP1258455A1, 2002-11-20.Google Scholar
  12. 12.
    H. K. Zhao, T. L. Luo, B. Z. Ren, J. Li and G. J. Liu, J. Chem. Eng. Data, 48 (2003) 1540.CrossRefGoogle Scholar
  13. 13.
    S. D. Cosgrove and J. William, J. Mater. Chem., 8 (1998) 413.CrossRefGoogle Scholar
  14. 14.
    J. Opfermann, J. Therm. Anal. Cal., 60 (2000) 641.CrossRefGoogle Scholar
  15. 15.
    R. M. Vinnik and V. A. Roznyatovsky, J. Therm. Anal. Cal., 83 (2006) 193.CrossRefGoogle Scholar
  16. 16.
    D. Marquardt and SIAM, J. Appl. Math., 11 (1963) 431.Google Scholar
  17. 17.
    J. Opfermann, Rechentechnik/Datenverarbeitung, 22 (1985) 26.Google Scholar
  18. 18.
    J. Opfermann, Manual of the Program NETZSCH Thermokinetics, Version 1998.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Z. Hong-Kun
    • 1
  • T. Cao
    • 1
  • Zh. Dao-Sen
    • 1
  • X. Wen-Lin
    • 1
  • W. Ya-Qong
    • 1
  • Q. Qi-Shu
    • 1
  1. 1.College of Chemistry and Chemical EngineeringYangZhou UniversityYangZhouPR China

Personalised recommendations