Journal of Thermal Analysis and Calorimetry

, Volume 83, Issue 1, pp 107–112 | Cite as

Flammability studies of benzene and methanol with different vapor mixing ratios under various initial conditions

  • Chang Y M 
  • Hu K H 
  • Chen J K 
  • Shu C M 


This research investigated the influence of binary solutions of benzene and methanol for their vapor flammability characteristics. The different mixing ratios (100/0, 75/25, 50/50, 25/75 and 0/100 vol%) samples were injected into a 20-liter spherical explosion vessel under various initial temperatures (100, 150 and 200°C) to study their flammability behaviors. According to the experimental results, the flammability diagram of mixtures can be completely illustrated and combined with specific safety-related properties such as lower explosion limit (LEL), upper explosion limit (UEL), minimum oxygen concentration (MOC), maximum explosion overpressure (Pmax), and gas or vapor deflagration index (Kg). The experimental results showed that the UEL, Pmax and Kg all increased with the temperature, pressure and oxygen concentration, whereas there was no significant variation on the part of LEL. The results can provide specific information on fire and explosion hazards for related industries.


binary solutions fire and explosion hazards flammability diagram safety-related properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khan, FI, Rani, JD, Abbasi, SA 1998Korean J. Chem. Eng.15124Google Scholar
  2. 2.
    Marshall, V 1987Major chemical hazardsEllis Horwood Ltd.ChichesterGoogle Scholar
  3. 3.
    Sun, JH, Li,  XR, Hasegawa, K, Liao, GX 2004J. Therm. Anal. Cal.76883CrossRefGoogle Scholar
  4. 4.
    Badeen, CM, Kwok, QSM, Vachon, CR, Turcotte, R, Jones, DEG 2005J. Therm. Anal. Cal.81225CrossRefGoogle Scholar
  5. 5.
    Miyake, A, Kimura, A, Ogawa, T, Satoh, Y, Inano, M 2005J. Therm. Anal. Cal.80515Google Scholar
  6. 6.
    Núñez-Regueira, L, Rodríguez-Añón, JA, Proupín,  J, Mouriño, B, Artiaga-Diaz, R 2005J. Therm. Anal. Cal.80457CrossRefGoogle Scholar
  7. 7.
    Gao, M, Sun, C, Zhu, K 2004J. Therm. Anal. Cal.75221CrossRefGoogle Scholar
  8. 8.
    Rybiñski, P, Janowska, G, Antkowicz, W, Krauze, S 2005J. Therm. Anal. Cal.819Google Scholar
  9. 9.
    Rybiñski, P, Janowska, G, Helwig, M, Dabrowski, W, Majewski, K 2004J. Therm. Anal. Cal.75249Google Scholar
  10. 10.
    Popescu, C, de Klerk, WPC , Krabbendam-LaHaye, ELM 2005J. Therm. Anal. Cal.80511CrossRefGoogle Scholar
  11. 11.
    Carrick, W, Fernee, L, Francis, D 2005J. Therm. Anal. Cal.79101CrossRefGoogle Scholar
  12. 12.
    Carty, P, Creighton, JR, White, S 2001J. Therm. Anal. Cal.63679CrossRefGoogle Scholar
  13. 13.
    Xu, JZ, Tian, CM , Ma, ZG, Gao, M, Guo, HZ, Yao, ZH 2000J. Therm. Anal. Cal.63501Google Scholar
  14. 14.
    Pielichowski, K, Słotwińska,  D, Słotwińska, J 2000J. Therm. Anal. Cal.63317Google Scholar
  15. 15.
    Atkinson, PA, Haines, PJ, Skinner, GA , Lever, TJ 2000J. Therm. Anal. Cal.59395CrossRefGoogle Scholar
  16. 16.
    W. Fruscella, 'Benzene' in Encyclopedia of Chemical Technology, 4th Ed. by Kirk-Othmer, 4, 73, 1996.Google Scholar
  17. 17.
    A. English, J. Rovner, J. Brown and S. Davies, 'Methanol' in Encyclopedia of Chemical Technology, 4th Ed. by Kirk-Othmer, 16, 537, 1996.Google Scholar
  18. 18.
    B. Kühner, Operating Instructions 20-L-Apparatus 6.0, 2005.Google Scholar
  19. 19.
    American Society for Testing and Materials1988Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts, ASTM E 1226-88ASTM E 1226-88, American Society for Testing and MaterialsPhiladelphia, PA, USAGoogle Scholar
  20. 20.
    Chen, JK 2004Master ThesisNYUSTYunlin, TaiwanGoogle Scholar
  21. 21.
    National Fire Protection Association2002Guide for Venting of Deflagrations NFPA 68National Fire Protection AssociationQuincy, MA, USAGoogle Scholar
  22. 22.
    Shu, CM, Wen, PJ 2002J. Loss Prev. Pro. Ind.15253Google Scholar
  23. 23.
    American Society for Testing and Materials1991Standard Test Method for Concentration Limits of Flammability of Chemicals (Vapors and Gases), ASTM E 681-01American Society for Testing and MaterialsPhiladelphia, PA, USAGoogle Scholar
  24. 24.
    Crowl, DA, Louvar, JF 2002Chemical Process Safety: Fundamentals with Applications2Prentice-HallNew Jersey, USAGoogle Scholar
  25. 25.
    Le Chatelier, H 1891Estimation of Firedamp by Flammability LimitSAnn. Mines19, 8388Google Scholar
  26. 26.
    Zabetakis, MG 1965Flammability Characteristics of Combustible Gases and Vapors, Bulletin 627 US Bureau of Mines, XMBUAUSAGoogle Scholar
  27. 27.
    Hilado, CJ 1975J. Fire Flammability6130Google Scholar
  28. 28.
    National Fire Protection Association1997Standard on Explosion Prevention Systems, NFPA 69National Fire Protection AssociationQuincy,MA, USAGoogle Scholar
  29. 29.
    Vanderstraeten, B, Tuerlinckx,  D, Berghmans,  J, Vliegen,  S, Van't Oost,  E, Smit,  B 1997J. Hazard. Mater.56237CrossRefGoogle Scholar
  30. 30.
    Zabetakis, MG 1965AIChE-Inst. Chem. Eng. Symp.299Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Chang Y M 
    • 1
  • Hu K H 
    • 2
  • Chen J K 
    • 1
  • Shu C M 
    • 1
  1. 1.Process Safety and Disaster Prevention Laboratory, Department of Safety, Health, and Environmental EngineeringNational Yunlin University of Science and Technology (NYUST)Touliu, YunlinTaiwan
  2. 2.Jen-Teh Junior College of MedicineNursing and ManagementHoulong, MiaoliTaiwan

Personalised recommendations