Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 2, pp 315–320 | Cite as

Thermal behavior of ammonium perchlorate and metal powders of different grades

  • Zhi J. 
  • Tian-Fang W. 
  • Shu-Fen L. 
  • Feng-Qi Z. 
  • Zi-Ru L. 
  • Cui-Mei Y. 
  • Yang L. 
  • Shang-Wen L. 
  • Gang-Zhui Z. 


The effects of aluminum (Al) and nickel (Ni) powders of various grain sizes on the thermal decomposition of ammonium perchlorate (AP) were investigated by TG and DSC in a dynamic nitrogen atmosphere. The TG results show that Al powders have no effect on the thermal decomposition of AP at conventional grain size, while the nanometer-sized Ni powders (n-Ni) have a great influence on the thermal decomposition of AP with conventional and superfine grain size. The results obtained by DSC and an in situ FTIR analysis of the solid residues confirmed the promoting effects of n-Ni. The effects of n-Ni have been ascribed to its enhancement on the gas phase reactions during the second step decomposition of conventional grain size AP.


aluminum ammonium perchlorate FTIR nano metal powder nickel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henglein, A 1989Chem. Rev.891861CrossRefGoogle Scholar
  2. 2.
    Caviechi, RE, Silsbee, RH 1984Phys. Rev. Lett.521453CrossRefGoogle Scholar
  3. 3.
    Ivanov, GV, Tepper, F,  et al. 1997Challenges in Propellants and Combustion 100 Years after NobelBegell HouseNew York636Google Scholar
  4. 4.
    Jiang, Z, F Li, S, Zhao, FQ 2002J. Energ. Mater.20165Google Scholar
  5. 5.
    Yagodnikov, DA, Voronetskii, AV 1997Combust. Expl. Shock3349Google Scholar
  6. 6.
    Mench, MM, Kuo, KK, Yeh, CL, Lu, YC 1998Combust. Sci. Technol.135269Google Scholar
  7. 7.
    Kuo, KK, Summerfield, M,  et al. 1984Fundamental of Solid Propellant CombustionAIAA. Inc.New York53Google Scholar
  8. 8.
    Said, AA 1991J. Thermal Anal.37959CrossRefGoogle Scholar
  9. 9.
    Said, AA, AlQasmi, R 1996Thermochim. Acta27583CrossRefGoogle Scholar
  10. 10.
    Halawy, SA, Al-Shihry, SS 1999J. Therm. Anal. Cal.55833CrossRefGoogle Scholar
  11. 11.
    Halawy, SA, Mohamed, MA 1994Collect. Czech. Chem. Commun.592253CrossRefGoogle Scholar
  12. 12.
    Liu, LL, Li, FS, Tan, LH 2004Propellants, Explos., Pyrotech.2934CrossRefGoogle Scholar
  13. 13.
    Jacobs, PWM 1969Combus. Flame13419CrossRefGoogle Scholar
  14. 14.
    Ganga Devi, T, Kannan, MP, Hema, B 1996Thermochim. Acta285269CrossRefGoogle Scholar
  15. 15.
    Rosso, L, Pure, ME 2004Appl. Chem.7649Google Scholar
  16. 16.
    R. Behrens and L.Minier, Sand-97-8422C.Google Scholar
  17. 17.
    Kishore, K, Sunitha, MR 1979AIAA Journal171118CrossRefGoogle Scholar
  18. 18.
    Rajic, M, Suceska, M 2001J. Therm. Anal. Cal.63375CrossRefGoogle Scholar
  19. 19.
    A. Pivkina, Yu. Frolov, S. Zavyalov, 31st International Pyrotechnics Seminar, Fort Collins, CO, July 11–16, 2004, p. 285.Google Scholar
  20. 20.
    Rocco, JAF, Lima, JES, Frutuoso, AG 2004J. Therm. Anal. Cal.77803CrossRefGoogle Scholar
  21. 21.
    Silva, MF, da Silva, CA, Fogo, FC 2004J. Therm. Anal. Cal.79367CrossRefGoogle Scholar
  22. 22.
    Barontini, F, Marsanich, K, Cozzani, V 2004J. Therm. Anal. Cal.78599CrossRefGoogle Scholar
  23. 23.
    Champion, Y, Bigot, J 1998Nanostr. Mat.101097CrossRefGoogle Scholar
  24. 24.
    Socrates, G,  et al. 2001Infrared and Raman characteristic group frequencies: tables and chartsWileyChichester, EnglandGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Zhi J. 
    • 1
  • Tian-Fang W. 
    • 1
  • Shu-Fen L. 
    • 1
  • Feng-Qi Z. 
    • 2
  • Zi-Ru L. 
    • 2
  • Cui-Mei Y. 
    • 2
  • Yang L. 
    • 2
  • Shang-Wen L. 
    • 2
  • Gang-Zhui Z. 
    • 3
  1. 1. Department of Chemistry PhysicsUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.Xian Modern Chemistry Research InstituteXianP.R. China
  3. 3.Shanxi Institute of Power MachineryXianP.R. China

Personalised recommendations