Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 2, pp 339–349 | Cite as

The influence of Mn2+ and Ni2+ ions on the surface properties of the aluminium oxide samples using Q-TG and Q-DTG data

  • Staszczuk P. 
  • Planda-Czyz M. 
  • Sternik D. 
  • Blachnio M. 
  • Grodzicka G. 
  • Pekalska J. 
  • Wasak S. 
  • Pilorz K. 
Article

Abstract

The paper presents the complex studies of adsorption and porosity of pure and modified–aluminium oxides samples. The presence of Mn2+ and Ni2+ modifiers on the aluminium oxide surface causes increase in water adsorption capacity and its decrease in the case of benzene and n-octane. This is due to decrease of specific surface area, volume and radius of pores as a result of surface impregnation and microcrystals formation during modification with manganese and nickel chlorides. Microcrystals formation on the surface and porosity decrease where confirmed by the AFM and SEM studies.

From the Q-TG and Q-DTG data, the energies of liquid desorption from the surface of the samples and the functions of desorption, energy distribution were calculated. High degree of nonlinearity of the run of the functions resulting from great heterogeneity of the studied surface was found. Adsorption of cations creates more homogeneous surface of aluminium oxide, and it is responsible for the change in adsorbate molecule interaction energy and changes mechanism of adsorption and desorption as well as thickness and structure of the adsorbed film. From the experimental data some parameters characterizing adsorption properties and porosity of the studied samples were determined using the measuring methods (thermal analysis, sorptomate, porosimetry, AFM).

Keywords

adsorption of ions aluminium oxides surface properties thermal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Teichner, SJ 1974Bul. Soc. Chim. Fr.7-81226Google Scholar
  2. 2.
    Deng, J, Cao, Z, Zhou, B 1995Appl. Catal. A: General1329CrossRefGoogle Scholar
  3. 3.
    Ramsis, MN, Philip, ChA, Abd El Khlik, M, Souaya, ER 1996J. Thermal Anal.461775CrossRefGoogle Scholar
  4. 4.
    Kis, E, Marinkovic-Neducin, R, Lomic, G, Boskovic, G, Obadovic, DZ, Kiurski, J, Putanov, P 1998Polyhedron1727CrossRefGoogle Scholar
  5. 5.
    Franquin, D, Monteverdi, S, Molina, S, Betahar, MM, Fort, Y 1999J. Mater. Sci.344481CrossRefGoogle Scholar
  6. 6.
    Grzybowska-Owierkosz, B,  et al. 1993Elementy katalizy heterogenicznej (Elements of heterogeneity catalysis)PWNWarszawaGoogle Scholar
  7. 7.
    Popowski, BB 1976Nauka (Novosibirsk)6116Google Scholar
  8. 8.
    Sternik, D, Staszczuk, P, Grodzicka, G, Pekalska, J, Skrzypiec, K 2004J. Therm. Anal. Cal.77171CrossRefGoogle Scholar
  9. 9.
    Khattak, AK, Afzal, M, Saleem, M, Yasmeen, G, Ahmad, R 2000Colloids Surf., A: Physicochem. Engin. Aspects16299CrossRefGoogle Scholar
  10. 10.
    Deng, J, Cao, Z, Zhou, B 1995Appl. Catal., A: General1329CrossRefGoogle Scholar
  11. 11.
    Braithwaite, A, Cooper, M 1996Chromatographia42977CrossRefGoogle Scholar
  12. 12.
    McClellan, AL, Harnsberger, HF 1967J. Coll. Int. Sci.23577CrossRefGoogle Scholar
  13. 13.
    Staszczuk, P, Kutarov, VV, Planda, M 2003J. Therm. Anal. Cal.71445CrossRefGoogle Scholar
  14. 14.
    Staszczuk, P, Sternik, D, Kutarov, VV 2003J. Therm. Anal. Cal.6923CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Staszczuk P. 
    • 1
  • Planda-Czyz M. 
    • 1
  • Sternik D. 
    • 1
  • Blachnio M. 
    • 1
  • Grodzicka G. 
    • 1
  • Pekalska J. 
    • 1
  • Wasak S. 
    • 1
  • Pilorz K. 
    • 2
  1. 1. Department of Physicochemistry of Solid Surface, Chemistry FacultyMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.Department of ChromatographyMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations