Journal of Thermal Analysis and Calorimetry

, Volume 86, Issue 3, pp 775–781 | Cite as

Synthesis, characterization and thermal decomposition of thiourea complexes of antimony and bismuth triiodide

  • Zhong G. Q. 
  • Luan S. R. 
  • Wang P. 
  • Guo Y. C. 
  • Chen Y. R. 
  • Jia Y. Q. 


The thiourea complexes of antimony and bismuth triiodide were synthesized by a direct reaction of antimony and bismuth triiodide with thiourea powder at room temperature. The formula of the complex is MI3[SC(NH2)2]3(M=Sb, Bi). The crystal structure of the complexes belongs to monoclinic system and the lattice parameters are a=1.4772 nm, b=1.6582 nm, c=2.0674 nm and β=90.81° for SbI3(SC(NH2)2)3 and a=1.4009 nm, b=2.0170 nm, c=2.0397 nm and β=90.84° for BiI3[SC(NH2)2]3. The infrared spectra reveal that the trivalent antimony or bismuth ion is coordinated by the nitrogen atom, not the sulfur atom of the thiourea. Thermal analysis shows that there are two times structure rearrangements or phase transformation in the complexes from 100 to 170°C.


characterization solid–solid synthesis thermal decomposition thiourea complex of Sb and Bi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oki, H, Otsuka, K 1976Bull. Chem. Soc. Jpn.491841CrossRefGoogle Scholar
  2. 2.
    Siddiqui, RA, Raj, P, Saxena, AK, Dixit, SK 1996Synth. Reac. Inorg. Met.-org. Chem.261189Google Scholar
  3. 3.
    Willey, GR, Daly, LT, Meehan, PP, Drew, MGB 1996J. Chem. Soc. Dalton Trans.14045CrossRefGoogle Scholar
  4. 4.
    Singh, MS, Rao, KP 1999Synth. Reac. Inorg. Met.-org. Chem.29541Google Scholar
  5. 5.
    Cantos, G, Barbieri, CL, Iacomini, M, Gorin, PAJ, Travassos, LR 1993Biochem. J.289155Google Scholar
  6. 6.
    Kaloustian, J, Pauli, AM, Pieroni, G, Portugal, H 2002J. Therm. Anal. Cal.70963CrossRefGoogle Scholar
  7. 7.
    Xi, L, Yi, L, Jun, W, Huigang, L, Songsheng, Q 2002J. Therm. Anal. Cal.67589CrossRefGoogle Scholar
  8. 8.
    N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (2nd Ed.), Reed Educational and Professional Publishing Ltd. (1997) p. 553.Google Scholar
  9. 9.
    Guo, YC, Luan, SR, Chen, YR, Zang, XS, Jia, YQ, Zhong, GQ, Ruan, SK 2002J. Therm. Anal. Cal.681025CrossRefGoogle Scholar
  10. 10.
    Jia, RR, Yang, YX, Chen, YR, Jia, YQ 2004J. Therm. Anal. Cal.76157CrossRefGoogle Scholar
  11. 11.
    Yamaguchi, A, Penland, RP, Mizushima, S, Lane, TJ, Curran, C, Quagliano, JV 1958J. Am. Chem. Soc.80527CrossRefGoogle Scholar
  12. 12.
    Rivest, R 1962Can. J. Chem.402234CrossRefGoogle Scholar
  13. 13.
    Nakamoto, K,  et al. 1978Infrared and Raman Spectra of Inorganic and Coordination Compounds (3rd Ed.)John Wiley & Sons Inc.New YorkGoogle Scholar
  14. 14.
    Adams, DM, Cornell, JB 1967J. Chem. Soc.(A)1884Google Scholar
  15. 15.
    Shannon, RD 1976Acta Crystallogr, .Sect. A.32751CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Zhong G. Q. 
    • 1
  • Luan S. R. 
    • 4
  • Wang P. 
    • 2
  • Guo Y. C. 
    • 3
  • Chen Y. R. 
    • 4
  • Jia Y. Q. 
    • 4
  1. 1. College of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangP. R. China
  2. 2.Department of ChemistryYancheng Teacher’s CollegeYanchengP. R. China
  3. 3.Department of ChemistryNanyang Teacher’s CollegeNanyangP. R. China
  4. 4.Department of ChemistryEast China University of Science and TechnologyShanghaiP. R. China

Personalised recommendations