Skip to main content
Log in

Divalent transition metal complexes of 3,5-pyrazoledicarboxylate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New divalent transition metal 3,5-pyrazoledicarboxylate hydrates of empirical formula Mpz(COO)2(H2O)2, where M=Mn, Co, Ni, Cu, Zn and Cd (pz(COO)2=3,5-pyrazoledicarboxylate), metal hydrazine complexes of the type Mpz(COO)2N2H4 where M=Co, Zn or Cd and Mpz(COO)2nN2H4·H2O, where n=1 for M=Ni and n=0.5 for M=Cu have been prepared and characterized by physico-chemical methods. Electronic spectroscopic data suggest that Co and Ni complexes adopt an octahedral geometry. The IR spectra confirm the presence of unidentate carboxylate anion (Δν=νasy(COO)–νsym(COO)>215 cm–1) in all the complexes and bidentate bridging hydrazine (νN–N=985–950 cm–1) in the metal hydrazine complexes. Both metal carboxylate and metal hydrazine carboxylate complexes undergo endothermic dehydration and/or dehydrazination followed by exothermic decomposition of organic moiety to give the respective metal oxides as the end products except manganese pyrazoledicarboxylate hydrate, which leaves manganese carbonate. X-ray powder diffraction patterns reveal that the metal carboxylate hydrates are isomorphous as are those of metal hydrazine complexes of cobalt, zinc and cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EW Schmidt et al. (1984) Hydrazine and its Derivatives – Preparation, Properties and Applications Wiley Interscience New York

    Google Scholar 

  2. BT Heaton C Jacob P Page (1996) Coord. Chem. Rev. 154 193 Occurrence Handle10.1016/0010-8545(96)01285-4 Occurrence Handle1:CAS:528:DyaK28XlvFGmtLY%3D

    Article  CAS  Google Scholar 

  3. A Ferrari A Braibanti G Bigliardi AM Lanfredi A Tiripicchio (1966) Nature 211 1174

    Google Scholar 

  4. A Braibanti F Dallavalle MA Pellinghelli E Laporati (1968) Inorg. Chem. 7 1430 Occurrence Handle10.1021/ic50065a034 Occurrence Handle1:CAS:528:DyaF1cXktl2qtrY%3D

    Article  CAS  Google Scholar 

  5. BN Sivasankar S Govindarajan (1994) Thermochim. Acta 244 235 Occurrence Handle10.1016/0040-6031(94)80222-X Occurrence Handle1:CAS:528:DyaK2cXntFCntLk%3D

    Article  CAS  Google Scholar 

  6. P Ravindranathan GV Mahesh KC Patil (1987) J. Solid State Chem. 66 20 Occurrence Handle10.1016/0022-4596(87)90216-7 Occurrence Handle1:CAS:528:DyaL2sXht1Kgur0%3D

    Article  CAS  Google Scholar 

  7. BN Sivasankar S Govindarajan (1996) Mater. Res. Bull. 31 47 Occurrence Handle10.1016/0025-5408(95)00159-X Occurrence Handle1:CAS:528:DyaK28XhvFKitw%3D%3D

    Article  CAS  Google Scholar 

  8. T Premkumar S Govindarajan (2003) Inorg. Chem. Commun. 6 1385 Occurrence Handle10.1016/j.inoche.2003.08.025 Occurrence Handle1:CAS:528:DC%2BD3sXnvVWqtbw%3D

    Article  CAS  Google Scholar 

  9. GB Barlin et al. (1982) Heterocyclic Compounds, Vol. 41, The pyrazines Interscience New York Ch. IX

    Google Scholar 

  10. JC Bayon P Esteban G Net PG Rasmussen KN Bajer CW Hahn MM Gumz (1991) Inorg. Chem. 30 2572 Occurrence Handle10.1021/ic00011a023 Occurrence Handle1:CAS:528:DyaK3MXisFyntb0%3D

    Article  CAS  Google Scholar 

  11. G Net JC Bayon WM Butler P Rasmussen (1989) J. Chem. Soc., Chem. Commun. 1 1022 Occurrence Handle10.1039/c39890001022

    Article  Google Scholar 

  12. T Premkumar S Govindarajan (2002) Thermochim. Acta 386 35 Occurrence Handle10.1016/S0040-6031(01)00756-0 Occurrence Handle1:CAS:528:DC%2BD38XitFeqsL8%3D

    Article  CAS  Google Scholar 

  13. T Premkumar S Govindarajan W-P Pan R-C Xie (2003) J. Therm. Anal. Cal. 74 325 Occurrence Handle10.1023/A:1026314911438 Occurrence Handle1:CAS:528:DC%2BD3sXosVGgt7w%3D

    Article  CAS  Google Scholar 

  14. CW Hahn PG Rasmussen JC Bayon (1992) Inorg. Chem. 31 1963 Occurrence Handle10.1021/ic00036a046 Occurrence Handle1:CAS:528:DyaK38XisVOhtLk%3D

    Article  CAS  Google Scholar 

  15. M Nakahanada K Ino S Kaizaki (1993) J. Chem. Soc., Dalton Trans. 1 3681 Occurrence Handle10.1039/dt9930003681

    Article  Google Scholar 

  16. N Sakagami-Yoshida M Teramoto A Hioki A Fuyuhiro S Kaizaki (2000) Inorg. Chem. 39 5717 Occurrence Handle10.1021/ic000361f Occurrence Handle1:CAS:528:DC%2BD3cXotFeqsb0%3D

    Article  CAS  Google Scholar 

  17. AI Vogel et al. (1986) A Text Book of Quantitative Inorganic Analysis, 4th Ed. Longman London

    Google Scholar 

  18. D Sanna G Micera P Buglyo T Kiss T Gajda P Surdy (1998) Inorg. Chim. Acta 268 297 Occurrence Handle10.1016/S0020-1693(97)05761-7 Occurrence Handle1:CAS:528:DyaK2sXotFWkurs%3D

    Article  CAS  Google Scholar 

  19. ABP Lever et al. (1984) Inorganic Electronic Spectroscopy, 2nd Ed. Elsevier Amsterdam

    Google Scholar 

  20. K Nakamoto et al. (1978) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd Edn. Wiley Interscience New York

    Google Scholar 

  21. S Govindarajan KC Patil H Manohar PE Werner (1986) J. Chem. Soc., Dalton Trans. 1 119 Occurrence Handle10.1039/dt9860000119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindarajan S..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premkumar, T., Govindarajan, S. Divalent transition metal complexes of 3,5-pyrazoledicarboxylate. J Therm Anal Calorim 84, 395–399 (2006). https://doi.org/10.1007/s10973-005-6932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-6932-0

Keywords

Navigation