Divalent transition metal complexes of 3,5-pyrazoledicarboxylate



New divalent transition metal 3,5-pyrazoledicarboxylate hydrates of empirical formula Mpz(COO)2(H2O)2, where M=Mn, Co, Ni, Cu, Zn and Cd (pz(COO)2=3,5-pyrazoledicarboxylate), metal hydrazine complexes of the type Mpz(COO)2N2H4 where M=Co, Zn or Cd and Mpz(COO)2nN2H4·H2O, where n=1 for M=Ni and n=0.5 for M=Cu have been prepared and characterized by physico-chemical methods. Electronic spectroscopic data suggest that Co and Ni complexes adopt an octahedral geometry. The IR spectra confirm the presence of unidentate carboxylate anion (Δν=νasy(COO)–νsym(COO)>215 cm–1) in all the complexes and bidentate bridging hydrazine (νN–N=985–950 cm–1) in the metal hydrazine complexes. Both metal carboxylate and metal hydrazine carboxylate complexes undergo endothermic dehydration and/or dehydrazination followed by exothermic decomposition of organic moiety to give the respective metal oxides as the end products except manganese pyrazoledicarboxylate hydrate, which leaves manganese carbonate. X-ray powder diffraction patterns reveal that the metal carboxylate hydrates are isomorphous as are those of metal hydrazine complexes of cobalt, zinc and cadmium.


hydrazine IR spectra, metal complexes 3,5-pyrazoledicarboxylic acid thermal decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmidt, EW,  et al. 1984Hydrazine and its Derivatives – Preparation, Properties and ApplicationsWiley InterscienceNew YorkGoogle Scholar
  2. 2.
    Heaton, BT, Jacob, C, Page, P 1996Coord. Chem. Rev.154193CrossRefGoogle Scholar
  3. 3.
    Ferrari, A, Braibanti, A, Bigliardi, G, Lanfredi, AM, Tiripicchio, A 1966Nature2111174Google Scholar
  4. 4.
    Braibanti, A, Dallavalle, F, Pellinghelli, MA, Laporati, E 1968Inorg. Chem.71430CrossRefGoogle Scholar
  5. 5.
    Sivasankar, BN, Govindarajan, S 1994Thermochim. Acta244235CrossRefGoogle Scholar
  6. 6.
    Ravindranathan, P, Mahesh, GV, Patil, KC 1987J. Solid State Chem.6620CrossRefGoogle Scholar
  7. 7.
    Sivasankar, BN, Govindarajan, S 1996Mater. Res. Bull.3147CrossRefGoogle Scholar
  8. 8.
    Premkumar, T, Govindarajan, S 2003Inorg. Chem. Commun.61385CrossRefGoogle Scholar
  9. 9.
    Barlin, GB,  et al. 1982Heterocyclic Compounds, Vol. 41, The pyrazinesInterscienceNew YorkCh. IXGoogle Scholar
  10. 10.
    Bayon, JC, Esteban, P, Net, G, Rasmussen, PG, Bajer, KN, Hahn, CW, Gumz, MM 1991Inorg. Chem.302572CrossRefGoogle Scholar
  11. 11.
    Net, G, Bayon, JC, Butler, WM, Rasmussen, P 1989J. Chem. Soc., Chem. Commun.11022CrossRefGoogle Scholar
  12. 12.
    Premkumar, T, Govindarajan, S 2002Thermochim. Acta38635CrossRefGoogle Scholar
  13. 13.
    Premkumar, T, Govindarajan, S, Pan, W-P, Xie, R-C 2003J. Therm. Anal. Cal.74325CrossRefGoogle Scholar
  14. 14.
    Hahn, CW, Rasmussen, PG, Bayon, JC 1992Inorg. Chem.311963CrossRefGoogle Scholar
  15. 15.
    Nakahanada, M, Ino, K, Kaizaki, S 1993J. Chem. Soc., Dalton Trans.13681CrossRefGoogle Scholar
  16. 16.
    Sakagami-Yoshida, N, Teramoto, M, Hioki, A, Fuyuhiro, A, Kaizaki, S 2000Inorg. Chem.395717CrossRefGoogle Scholar
  17. 17.
    Vogel, AI,  et al. 1986A Text Book of Quantitative Inorganic Analysis, 4th Ed.LongmanLondonGoogle Scholar
  18. 18.
    Sanna, D, Micera, G, Buglyo, P, Kiss, T, Gajda, T, Surdy, P 1998Inorg. Chim. Acta268297CrossRefGoogle Scholar
  19. 19.
    Lever, ABP,  et al. 1984Inorganic Electronic Spectroscopy, 2nd Ed.ElsevierAmsterdamGoogle Scholar
  20. 20.
    Nakamoto, K,  et al. 1978Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd Edn.Wiley InterscienceNew YorkGoogle Scholar
  21. 21.
    Govindarajan, S, Patil, KC, Manohar, H, Werner, PE 1986J. Chem. Soc., Dalton Trans.1119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryBharathiar UniversityCoimbatoreIndia

Personalised recommendations