Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 3, pp 941–952 | Cite as

Thermal decomposition of transition metal dithiocarbamates

  • S. Singhal
  • A. N. Garg
  • K. Chandra
Article

Abstract

Transition metal dithiocarbamate complexes, [M(S2CN(C2H5)(CH2CH2OH)] (M=Co, Ni, Cu, Zn and Cd) have been prepared and characterized by elemental analysis and infrared spectra. Thermal decomposition of all the complexes occurs in two or three stages. The first stage in all the complexes is always fast with 65–70% mass loss. In all cases the end product is metal oxide except in the case of cobalt complex which gives Co metal as an end product. During decomposition of copper complex, first CuS is formed at ≈300°C which is converted into CuSO4 and finally CuO is formed. However, decomposition in helium atmosphere yields CuS. SEM studies of transition metal dithiocarbamates reveal needle shape crystalline phase at room temperature and formation of metal sulphide/oxide at higher temperatures. The activation energy varies in a large range of 33.8–188.3 kJ mol−1, being minimum for the Cu complex and maximum for the Zn complex possibly due to d10 configuration. In the case of Ni, Zn and Cd complexes the order of reaction is two suggesting bimolecular process involving intermolecular rearrangement. However, in other cases it is a unimolecular process. Large negative values of ΔS# for all the complexes suggest that the decomposition process involves rearrangement.

Keywords

IR spectra metal dithiocarbamates metal oxide thermal decomposition thermodynamic parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. O. Hill and R. J. Magee, Rev. Inorg. Chem., 3 (1981) 141.Google Scholar
  2. 2.
    A. K. Sharma, Thermochim. Acta, 104 (1986) 339.Google Scholar
  3. 3.
    J. O. Hill, J. P. Murray and K. C. Patil, Rev. Inorg. Chem., 14 (1994) 363.Google Scholar
  4. 4.
    M. A. Bernard and M. M. Borel, Bull. Soc. Chim. Fr., (1969) 3066.Google Scholar
  5. 5.
    G. D’ Ascenzo and W. W. Wendlandt, J. Inorg. Nucl. Chem., 32 (1970) 2431.Google Scholar
  6. 6.
    Yu. S. Lyalikov and M. I. Kitovskaya, J. Thermal Anal., 4 (1972) 271.Google Scholar
  7. 7.
    C. G. Sceney, J. F. Smith, J. O. Hill and R. J. Magee, J. Thermal Anal., 9 (1976) 415.Google Scholar
  8. 8.
    S. V. Larionov, L. A. Kosareva, A. F. Malikova and A. A. Shklyaev, Zh. Neorg. Khim., 22 (1977) 2401.Google Scholar
  9. 9.
    N. K. Kaushik, G. R. Chhatwal and A. K. Sharma, Thermochim. Acta, 58 (1982) 231.Google Scholar
  10. 10.
    L. A. Kosareva and S. V. Larionov, Neorg. Khim., 24 (1979) 2834.Google Scholar
  11. 11.
    R. B. Lanjewar and A. N. Garg, Ind. J. Chem., 31A (1992) 849.Google Scholar
  12. 12.
    P. N. Bandiera and J. E. X. De Matos, An Assoc. Bras. Quim., 45 (1996) 25.Google Scholar
  13. 13.
    H. Cesur, T. K. Yazicilar, B. Bati and V. T. Yilmaz, Synth. React. Inorg. Metal Org. Chem., 31 (2001) 1271.Google Scholar
  14. 14.
    B. F. Ali, W. S. Al-Akramawi, K. H. Al-Obaidi and A. H. Al-Kabroli, Thermochim. Acta, 419 (2004) 39.Google Scholar
  15. 15.
    J. R. Botelho, A. G. Souza, L. M. Nunes, A. P. Chagas, I. M. Garcia Dos Santos, M. M. Da Conceicao and P. O. Dunstan, J. Therm. Anal. Cal., 67 (2002) 413.Google Scholar
  16. 16.
    D. Ondrusova, E. Jona and P. Simon, J. Therm. Anal. Cal., 67 (2002) 147.Google Scholar
  17. 17.
    J. R. Botelho, A. D. Gondim, I. M. G. Santos, P. O. Dunstan, A. G. Souza, V. J. Fernandes and A. S. Araujo, J. Therm. Anal. Cal., 75 (2004) 607.Google Scholar
  18. 18.
    M. C. D. Silva, M. M. Conceicao, M. F. S. Trindade, A. G. Souza, C. D. Pintheiro, J. C. Machado and P. F. A. Filho, J. Therm. Anal. Cal., 75 (2004) 583.Google Scholar
  19. 19.
    S. Singhal, C. L. Sharma, A. N. Garg and K. Chandra, Trans. Metal Chem., 26 (2001) 81.Google Scholar
  20. 20.
    S. Singhal, C. L. Sharma, A. N. Garg and K. Chandra, Polyhedron, 21 (2002) 2489.Google Scholar
  21. 21.
    E. S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.Google Scholar
  22. 22.
    D. C. Bradley and M. H. Gitlitz, J. Chem. Soc., A (1969) 1152.Google Scholar
  23. 23.
    T. M. Brown and J. N. Smith, J. Chem. Soc., Dalton Trans., (1972) 1614.Google Scholar
  24. 24.
    A. N. Bhat, R. C. Fay, D. F. Lewis, A. F. Lindmark and S. H. Strauss, Inorg. Chem., 13 (1974) 886.Google Scholar
  25. 25.
    K. Nakanishi and P. H. Solomon, Infrared Absorption Spectroscopy, 2nd Edn., Holdenday Inc., San Francisco 1977, p. 50.Google Scholar
  26. 26.
    G. R. Hall and D. N. Hendrickson, Inorg. Chem., 15 (1976) 607.Google Scholar
  27. 27.
    R. J. Butcher, J. R. Ferraro and E. Sinn, Inorg. Chem., 15 (1976) 2077.Google Scholar
  28. 28.
    W. W. Wendlandt, Thermal Methods of Analysis, 3rd Ed., Interscience, New York 1986.Google Scholar
  29. 29.
    D. Dollimore in: E. L. Charsley, S. B. Warrington (Eds), Thermal Analysis Techniques and Applications, The Royal Society of Chemistry, London 1992, p. 31.Google Scholar
  30. 30.
    I. Gil de Muro, F. A. Mautner, M. Insausti, L. Lezama, M. I. Arriortua and T. Rojo, Inorg. Chem., 37 (1998) 3243.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  1. 1.Department of Chemistry, Indian Institute of TechnologyRoorkeeIndia
  2. 2.Institute Instrumentation Centre, Indian Institute of TechnologyRoorkeeIndia

Personalised recommendations