Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 3, pp 739–744 | Cite as

Synthesis of LaCoO3 from lanthanum trisoxalatocobaltate(III) (LTC) precursor employing microwave heating technique

  • Y. S. Malghe
  • A. V. Gurjar
  • S. R. Dharwadkar


Lanthanum cobaltite LaCoO3, an important catalyst and an electronic material used as cathode in solid oxide fuel cells was prepared from lanthanum trisoxalatocobaltate(III) hydrate [LaCo(C2O4)3]·9H2O (LTC) employing microwave heating technique. It was observed that LTC heated in microwave heating system gives a pure product of LaCoO3 at 400°C within one hour. Thermogravimetry, differential thermal analysis and X-ray diffraction techniques were used to optimize conditions for microwave processing of the precursor.


catalyst LaCoO3 microwave heating solid oxide fuel cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Lago, G. Bini, M. A. Pena and J. L. G. Fierro, J. Catal., 167 (1997) 198.Google Scholar
  2. 2.
    M. O. Conell, A. K. Norman, C. F. Huttermann and M. A. Morris, Catal. Today, 47 (1999) 123.Google Scholar
  3. 3.
    W. F. Libby, Science, 171 (1971) 499.Google Scholar
  4. 4.
    R. J. H. Voorhoeve, J. P. Remika, P. E. Freeland and B. T. Matthias, Science, 177 (1972) 353.Google Scholar
  5. 5.
    D. B. Meadowcraft, Nature, 226 (1970) 847.Google Scholar
  6. 6.
    Y. Schimizu, K. Uemura, H. Mastuda, N. Miura and N. Yamazae, J. Electrochem. Soc., 137 (1990) 3430.Google Scholar
  7. 7.
    F. Aksham, I. Fankuchen and R. Ward, J. Amer. Chem. Soc., 72 (1950) 3799.Google Scholar
  8. 8.
    P. K. Gallagher, Mat. Res. Bull., 3 (1968) 225.Google Scholar
  9. 9.
    K. Nag and A. Roy, Thermochim. Acta, 17 (1976) 247.Google Scholar
  10. 10.
    A. Keshavaraja, N. E. Jacob and A. V. Ramaswamy, Proceedings of the 9th National Symposium on Thermal Analysis, Goa University, Bambolim,1993, (Eds P. V. Ravindran, M. Sudersanan, S. R. Bhardwaj and S. R. Dharwadkar), ITAS, BARC, Mumbai 2000, p. 283.Google Scholar
  11. 11.
    Y. S. Malghe, A. V. Gurjar and S. R. Dharwadkar, Bull. Mater. Sci., 27 (2004) 217.Google Scholar
  12. 12.
    N. Deb, J. Therm. Anal. Cal., 75 (2004) 837.Google Scholar
  13. 13.
    Y. Seto, K. Umemoto, T. Arii and Y. Masuda, J. Therm. Anal. Cal., 76 (2004) 165.Google Scholar
  14. 14.
    B. S. Randhava, K. J. Sweety, M. Kaur and J. M. Greheche, J. Therm. Anal. Cal., 75 (2004) 101.Google Scholar
  15. 15.
    H. E. Zorel Jr., M. S. Crespiz and C. A. Ribeiro, J. Therm. Anal. Cal., 75 (2004) 545.Google Scholar
  16. 16.
    Inorganic Synthesis, Vol. 1, Editor H. S. Booth, Mc Graw Hill Book Company Inc., New York and London 1939, p.37.Google Scholar
  17. 17.
    M. G. Usha, M. Subba Rao and T. R. Narayanan Kutty, Thermochim. Acta, 43 (1981) 35.Google Scholar
  18. 18.
    A. Wold and R. Ward, J. Amer. Chem. Soc., 76 (1954) 1029.Google Scholar
  19. 19.
    P. M. Raccah and J. B. Goodenough, Phys. Rev., 155 (1967) 932.CrossRefGoogle Scholar
  20. 20.
    V. G. Bhide, D. S. Rajoria, G. R. Rao and C. N. R. Rao, Phys. Rev., B6 (1972) 1021.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • Y. S. Malghe
    • 1
  • A. V. Gurjar
    • 2
  • S. R. Dharwadkar
    • 1
  1. 1.Department of ChemistryThe Institute of ScienceMumbaiIndia
  2. 2.Condensed Matter Physics and Material Science Division, TIFRMumbaiIndia

Personalised recommendations