Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 83, Issue 2, pp 407–410 | Cite as

Influence of different methods of controlling microwave sintering

The characteristics of oxide ceramics
  • Yasuoka M  
  • Nishimura Y  
  • Nagaoka T  
  • Watari K  
Article

Abstract

The ceramic industry uses enormous amounts of energy to produce products at high temperatures. Energy-saving measures based on sintering process improvements are examined.

Oxide ceramics were irradiated by two different methods during microwave sintering: intermittent use of the same high power levels (time-control method) and continuous use of lower, increasing levels of power (power-control method). We found that: 1) the power consumption and efficiency of the time-control method were lower than those of the power-control method; 2) the power-control method gave more precise control of temperature under our experimental conditions; 3) sample densification did not differ greatly between the two methods; and 4) grain growth did not differ greatly between the two methods.

Keywords

alumina, barium titanate microstructure microwave sintering power-control method time-control method zinc oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sutton, WH 1989J. Am. Ceram. Soc. Bull.68376Google Scholar
  2. 2.
    Katz, JD 1992Annual Review of Materials22153Google Scholar
  3. 3.
    Saltiel, C, Fathi, Z, Sutton, WH 1995Mechanical Engineering117102Google Scholar
  4. 4.
    Clark, DE, Sutton, WH 1996Annual Review of Materials26299Google Scholar
  5. 5.
    Ayappa, KG 1997Rev. Chem. Eng.131Google Scholar
  6. 6.
    Lee, WC, Kuo, KS, Lin, IN 1999Ferroelectrics231237Google Scholar
  7. 7.
    Birnboim, A, Gershon, D, Calame, J, Birman, A, Carmel, Y, Rodgers, J, Levush, B, Bykov, YV, Eremeev, AG , Holoptset, VV , Dadon, D, Martin, PL, Rosen, M 1988J. Am. Ceram. Soc.811493Google Scholar
  8. 8.
    Levinson, LM, Philipp, HR 1986J. Am. Ceram. Soc. Bull.65639Google Scholar
  9. 9.
    Gupta, TK 1990J. Am. Ceram. Soc.731817CrossRefGoogle Scholar
  10. 10.
    Lin, I, Lee, W, Liu, K, Cheng , H, Wu, M 2001J. Eur. Ceram. Soc.212085Google Scholar
  11. 11.
    Booske, JH, Cooper, RF, Freeman, SA 1997Mater. Res. Innov.177CrossRefGoogle Scholar
  12. 12.
    Cheng, JP, Agrawal, D, Zhang, YJ, Roy, R 2002Mater. Lett.56587Google Scholar
  13. 13.
    Brosnan, KH, Messing, GL, Agrawal, DK 2003J. Am. Ceram. Soc.861307Google Scholar
  14. 14.
    Mizuno, M, Obata, S, Takayama, S, Ito, S, Kato, N, Hirai, T, Sato, M 2004J. Eur. Ceram. Soc.24387CrossRefGoogle Scholar
  15. 15.
    Chang, HY, Liu, KS, Lin, IN 1995J. Appl. Phys.78423Google Scholar
  16. 16.
    Ma, Y, Vileno, E, Suib, SL, Dutta, PK 1997 Chem. Mater.9 3023CrossRefGoogle Scholar
  17. 17.
    Thakur, OP, Prakash, C, Agrawal, DK 2002J. Ceram. Proc. Res. 3 75.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Yasuoka M  
    • 1
  • Nishimura Y  
    • 1
  • Nagaoka T  
    • 1
  • Watari K  
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST) Anagahora, Shimo-Shidami, Moriyama-ku Nagoya, Aichi 463-8560Japan

Personalised recommendations