Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 79, Issue 1, pp 79–84 | Cite as

Densities and relative permittivities of binary mixtures containing dipropylene glycol monomethyl ether

  • C. M. Kinart
  • K. Nowak
  • A. Ćwiklińska
  • W. J. Kinart
  • A. Bald
Article

Abstract

Relative permittivities (ε) and densities (ρ) of numerous binary mixtures of dipropylene glycol monomethyl ether (1)+propylene glycol mono n-butyl ether (2) and dipropylene glycol monomethyl ether (1)+dipropylene glycol mono n-butyl ether (2) at five temperatures, between (293.15 and 313.15) K, are reported. The excess molar volumes (VE) and the relative permittivity deviations (Δε) were calculated from these experimental data. The results are discussed in terms of intermolecular interactions in the bulk of studied the binary mixtures.

binary liquid mixtures density dipropylene glycol monomethyl ether dipropylene glycol mono n-butyl ether propylene glycol mono n-butyl ether relative permittivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Cocchi, P. G. De Benedetti, R. Seeber, L. Tassi and A. Ulrici, J. Chem. Inf. Comput. Sci., 39 (1999) 1190.CrossRefGoogle Scholar
  2. 2.
    C. M. Kinart and W. J. Kinart, J. Phys. Chem. Liq., 38 (2000) 155.Google Scholar
  3. 3.
    C. M. Kinart, W. J. Kinart and A. Ćwiklińska, J. Chem. Eng. Data., 47 (2002) 76.Google Scholar
  4. 4.
    C. M. Kinart, W. J. Kinart and A. Ćwiklińska, J. Therm. Anal. Cal., 68 (2002) 307.CrossRefGoogle Scholar
  5. 5.
    C. M. Kinart, W. J. Kinart and D. Chęcińska-Majak, J. Chem. Eng. Data., 47 (2002)1537.Google Scholar
  6. 6.
    C. M. Kinart, W. J. Kinart, A. Ćwiklińska and T. Dzikowski, Phys. Chem. Liq., 41 (2003) 197.CrossRefGoogle Scholar
  7. 7.
    C. M. Kinart, W. J. Kinart and D. J. Chęcińska-Majak, Chem. Eng. Data., 48 (2003) 1037.CrossRefGoogle Scholar
  8. 8.
    O. Redlich and A.T. Kister, Ing. Eng. Chem., 40 (1948) 345.Google Scholar
  9. 9.
    Yu. Ya. Fialkov, A. N. Zhitomirskii and Yu. A. Tarasenko, Fizicheskaya Khimiya Nevodnikh Rastvorov, Chap. 8, Khimiya, Leningrad (1973).Google Scholar
  10. 10.
    L. S. Prabhumirashi and C. I. Jose, J. Chem. Soc. Faraday II, 71 (1975) 1545.CrossRefGoogle Scholar
  11. 11.
    L. S. Prabhumirashi and C. I. Jose, J. Chem. Soc. Faraday II, 72 (1976) 1721.CrossRefGoogle Scholar
  12. 12.
    L. S. Prabhumirashi and C. I. Jose, J. Chem. Soc. Faraday II, 74 (1978) 255.CrossRefGoogle Scholar
  13. 13.
    A. Pal and A. Kumar, J. Solution Chem., 28 (1999) 153.CrossRefGoogle Scholar
  14. 14.
    E. Mascato, L. Mosteiro, M. M. Pineiro, B. E. de Cominges, M. M. Mato and J. L. Legido, J. Therm. Anal. Cal., 70 (2002) 235.CrossRefGoogle Scholar
  15. 15.
    B. E. de Cominges, M. M. Pineiro, E. Mascato, L. Mosteiro, T. P. Iglesias and J. L. Legido, J. Therm. Anal. Cal., 72 (2003) 129.CrossRefGoogle Scholar
  16. 16.
    M. T. Räetzsch, H. Kahlen and H. Rosner, Z. Physik. Chem. Leipzig, 255 (1974) 115.Google Scholar
  17. 17.
    J. A. Riddick, W. B. Bunger and T. K. Sakano, Techniques of Chemistry, 4th Ed., Wiley, New York 1986.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

Authors and Affiliations

  • C. M. Kinart
    • 1
  • K. Nowak
    • 1
  • A. Ćwiklińska
    • 1
  • W. J. Kinart
    • 2
  • A. Bald
    • 1
  1. 1.Department of ChemistryUniversity of ŁódźPomorskaPoland
  2. 2.Department of Organic ChemistryUniversity of ŁódźNarutowiczaPoland

Personalised recommendations