Skip to main content

Advertisement

Log in

Design and analysis of a single elliptical channel photonic crystal fiber sensor for potential malaria detection

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Malaria is a mosquito-borne disease caused by unicellular hemoparasites of the genus Plasmodium that results in the death of over one million people worldwide every year. Early diagnosis plays a key role in the treatment of infected patients and can reduce the mortality rate. This work proposes a simple designed photonic crystal fiber (PCF) sensor for detecting malarial infection using the refractive index (RI) of red blood cells (RBCs). The initial structure of the PCF sensor consists of double loops of circular air holes arranged in a hexagonal formation. A horizontal elliptical channel in the center of the fiber contains the RBCs sample. The sensor’s response was observed from the shift of the transmission spectra due to change in the RI of RBCs during different life stages of the parasite. Model parameters (transmission length, pitch, air hole diameter, and eccentricity of the elliptical channel) of the proposed sensor were optimized to obtain the best possible response. The highest spectral sensitivities were obtained about 11,428.57 nm/RIU, 9473.68 nm/RIU, and 9655.17 nm/RIU for the ring, trophozoite, and schizont phases of the parasite, respectively. Due to its high sensitivity, easy identification capability, and short transmission length, this sensor can be utilized as a cost-effective and useful device for malaria diagnosis.

Highlights

  • A single elliptical channel photonic crystal fiber sensor is reported for the potential malaria detection.

  • The reported sensor is numerically investigated using finite element method based COMSOL Multiphysics software.

  • The design parameters of the sensor are also optimized for achieving the best sensing response.

  • The reported sensor shows the highest spectral sensitivities of 11,428.57 nm/RIU, 9473.68 nm/RIU, and 9655.17 nm/RIU for infected RBCs during the parasite’s ring, trophozoite, and schizont phases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World Malaria Report 2019, https://www.who.int/publications/i/item/world-malaria-report-2019

  2. Caraballo H, King K (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emerg Med Pract 16(5):1–23

    Google Scholar 

  3. Liu PY, Chin LK, Ser W, Chen HF, Hsieh CM, Lee CH, Sung KB, Ayi TC, Yap PH, Liedberg B, Wang K (2016) Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16(4):634–44

    Article  CAS  Google Scholar 

  4. Bendib S, Bendib C (2018) Photonic crystals for malaria detection. J Biosens Bioelectron 9(257):2

    Google Scholar 

  5. Jager MM, Murk JL, Piqué RD, Hekker TA, Vandenbroucke-Grauls CM (2011) Five-minute Giemsa stain for rapid detection of malaria parasites in blood smears. Trop Dr 41(1):33–5

    Article  CAS  Google Scholar 

  6. Wilson BK, Behrend MR, Horning MP, Hegg MC (2011) Detection of malarial byproduct hemozoin utilizing its unique scattering properties. Opt Express 19(13):12190–6

    Article  CAS  Google Scholar 

  7. Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S (2009) Malaria diagnosis: a brief review. Korean J Parasitol 47(2):93

    Article  Google Scholar 

  8. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH (2007) A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77(6_Suppl):S119–27

    Article  Google Scholar 

  9. Ranadive N, Kunene S, Darteh S, Ntshalintshali N, Nhlabathi N, Dlamini N, Chitundu S, Saini M, Murphy M, Soble A, Schwartz A (2017) Limitations of rapid diagnostic testing in patients with suspected malaria: a diagnostic accuracy evaluation from Swaziland, a low-endemicity country aiming for malaria elimination. Clin Infect Dis 64(9):1221–7

    Article  CAS  Google Scholar 

  10. Delahunt C, Horning MP, Wilson BK, Proctor JL, Hegg MC (2014) Limitations of haemozoin-based diagnosis of Plasmodium falciparum using dark-field microscopy. Malar J 13(1):147

    Article  Google Scholar 

  11. Bharti AR, Letendre SL, Patra KP, Vinetz JM, Smith DM (2009) Malaria diagnosis by a polymerase chain reaction–based assay using a pooling strategy. Am J Trop Med Hyg 81(5):754–7

    Article  CAS  Google Scholar 

  12. Bilal M, Saleem M, Amanat ST, Shakoor HA, Rashid R, Mahmood A, Ahmed M (2015) Optical diagnosis of malaria infection in human plasma using Raman spectroscopy. J Biomed Opt 20(1):017002

    Article  Google Scholar 

  13. Cojoc D, Finaurini S, Livshits P, Gur E, Shapira A, Mico V, Zalevsky Z (2012) Toward fast malaria detection by secondary speckle sensing microscopy. Biomed Opt express 3(5):991–1005

    Article  Google Scholar 

  14. Sanjay M, Singh NK, Ngashangva L, Goswami P (2020) A smartphone-based fiber-optic aptasensor for label-free detection of Plasmodium falciparum glutamate dehydrogenase. Anal Methods 12(10):1333–41

    Article  CAS  Google Scholar 

  15. Sabri N, Aljunid SA, Salim MS, Ahmad RB, Kamaruddin R. Toward optical sensors: Review and applications. In J Phys: Conf Ser 2013 (Vol. 423, No. 1, p. 012064). IOP Publishing

  16. Pinto AM, Lopez-Amo M. Photonic crystal fibers for sensing applications. J Sens. 2012:2012

  17. Tahhan SR, Aljobouri HK. Sensing of illegal drugs by using photonic crystal fiber in terahertz regime. J Optic Commun 2020 6:1 (ahead-of-print)

  18. Mollah MA, Yousufali M, Faysal MR, Hasan MR, Hossain MB, Amiri IS (2020) Highly sensitive photonic crystal fiber salinity sensor based on sagnac interferometer. Results Phys 16:103022

    Article  Google Scholar 

  19. Islam MS, Sultana J, Rifat AA, Dinovitser A, Ng BW, Abbott D (2018) Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens J 18(10):4073–80

    Article  CAS  Google Scholar 

  20. Rabee AS, Hameed MF, Heikal AM, Obayya SS (2019) Highly sensitive photonic crystal fiber gas sensor. Optik 188:78–86

    Article  CAS  Google Scholar 

  21. Shafkat A (2020) Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber. Sens Bio-Sens Res 28:100324

    Article  Google Scholar 

  22. Kumar KV, Ramya KC, Karthikumar S, Kumar KK (2018) Design of temperature sensor using twisted photonic crystal fiber. Results Phys 10:856–7

    Article  Google Scholar 

  23. Bock WJ, Chen J, Eftimov T, Urbanczyk W (2006) A photonic crystal fiber sensor for pressure measurements. IEEE Trans Instrum Meas 55(4):1119–23

    Article  CAS  Google Scholar 

  24. An G, Li S, Yan X, Zhang X, Yuan Z, Zhang Y (2016) High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber. JOSA B 33(7):1330–4

    Article  Google Scholar 

  25. Gangwar RK, Singh VK (2015) Refractive index sensor based on selectively liquid infiltrated dual core photonic crystal fibers. Photonics Nanostruct-Fundam Appl 15:46–52

    Article  Google Scholar 

  26. De M, Singh VK (2018) Magnetic fluid infiltrated dual core photonic crystal fiber based highly sensitive magnetic field sensor. Opt Laser Technol 106:61–8

    Article  CAS  Google Scholar 

  27. Mitu SA, Dey DK, Ahmed K, Paul BK, Luo Y, Zakaria R, Dhasarathan V (2020) Fe3O4 nanofluid injected photonic crystal fiber for magnetic field sensing applications. J Magn Magn Mater 494:165831

    Article  CAS  Google Scholar 

  28. Jabin MA, Ahmed K, Rana MJ, Paul BK, Islam M, Vigneswaran D, Uddin MS (2019) Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J 11(4):1–0

    Article  Google Scholar 

  29. De M, Pathak AK, Singh VK (2019) Single channel photonic crystal fiber based high sensitive petrol adulteration detection sensor. Optik 183:539–46

    Article  CAS  Google Scholar 

  30. Wang H, Yan X, Li S, An G, Zhang X (2016) High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice. Sensors 16(10):1655

    Article  Google Scholar 

  31. Mollah MA, Yousufali M, Ankan IM, Rahman MM, Sarker H, Chakrabarti K (2020) Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens Bio-Sensing Res 29:100344

  32. Yakasai I, Abas PE, Kaijage SF, Caesarendra W, Begum F (2019) Proposal for a quad-elliptical photonic crystal fiber for terahertz wave guidance and sensing chemical warfare liquids. Photonics 6(3):78. Multidisciplinary Digital Publishing Institute

    Article  CAS  Google Scholar 

  33. Issa NA, van Eijkelenborg MA, Fellew M, Cox F, Henry G, Large MC (2004) Fabrication and study of microstructured optical fibers with elliptical holes. Opt Lett 29(12):1336–8

    Article  Google Scholar 

  34. Kim SE, Kim BH, Lee CG, Lee S, Oh K, Kee CS (2012) Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Opt express 20(2):1385–91

    Article  Google Scholar 

  35. Guiyao Z, Zhiyun H, Shuguang L, Lantian H (2006) Fabrication of glass photonic crystal fibers with a die-cast process. Appl Opt 45(18):4433–6

    Article  Google Scholar 

  36. Zhang Y, Li K, Wang L, Ren L, Zhao W, Miao R, Large MC, Van Eijkelenborg MA (2006) Casting preforms for microstructured polymer optical fibre fabrication. Opt Express 14(12):5541–7

    Article  Google Scholar 

  37. Zhang WQ, Ebendorff-Heidepriem H, Monro TM, Afshar S (2011) Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. Opt Express 19(22):21135–44

    Article  CAS  Google Scholar 

  38. Ebendorff-Heidepriem H, Schuppich J, Dowler A, Lima-Marques L, Monro TM (2014) 3D-printed extrusion dies: a versatile approach to optical material processing. Opt Mater Express 4(8):1494–504

    Article  Google Scholar 

  39. Wang F, Yuan W, Hansen O, Bang O (2011) Selective filling of photonic crystal fibers using focused ion beam milled microchannels. Opt Express 19(18):17585–90

    Article  CAS  Google Scholar 

  40. Wang Y, Liao CR, Wang DN (2010) Femtosecond laser-assisted selective infiltration of microstructured optical fibers. Opt Express 18(17):18056–60

    Article  CAS  Google Scholar 

  41. Xiao L, Jin W, Demokan MS, Ho HL, Hoo YL, Zhao C (2005) Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Opt Express 13(22):9014–22

    Article  Google Scholar 

  42. Park Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, Suresh S Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci 2008;105(37):13730-5

  43. Aly AH, Zaky ZA (2019) Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 104:102991

    Article  CAS  Google Scholar 

  44. Seifouri M, Rouini MA, Olyaee S (2018) Design of a surface plasmon resonance biosensor based on photonic crystal fiber with elliptical holes. Opt Rev 25(5):555–62

    Article  CAS  Google Scholar 

  45. Panda A, Devi PP (2020) Photonic crystal biosensor for refractive index based cancerous cell detection. Opt Fiber Technol 54:102123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabih Zaki Rashed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafkat, A., Rashed, A.N.Z., El-Hageen, H.M. et al. Design and analysis of a single elliptical channel photonic crystal fiber sensor for potential malaria detection. J Sol-Gel Sci Technol 98, 202–211 (2021). https://doi.org/10.1007/s10971-021-05490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05490-5

Keywords

Navigation