Effects of solvents and Al doping on structure and physical properties of BiFeO3 thin films


In this study, BFO and BFAO thin films were prepared on fluorine-doped tin oxide (FTO) substrates via spin coating with two different acid solvents. One is nitric acid solution (solvent I), the other is a mixture of 2-methoxyethanol and glacial acetic acid (solvent II). The structure, morphology, elemental valence states, and ferroelectric properties of BiFeO3 (BFO) and BiFe0.96Al0.04O3 (BFAO) films were investigated. X-ray diffraction (XRD) results show that all the films are R3c structure and have no impurity phase. The SEM results show that the BFO thin film prepared by solvent II is more compact, uniform, and has low porosity. Raman spectra show that Al doping causes structural distortion. Al doping can solve the problem of porosity and increase the density of BFO thin film. Therefore, the density of BFAO-II sample is better. X-ray photoelectron spectroscopy (XPS) shows that the presence of Al reduces the oxygen vacancy content. This is beneficial to reduce the leakage current density and improve the ferroelectric properties. The leakage current density of BFAO-II sample is 10-3 A/cm2, and the double residual polarization value is 110.2 μC/cm2. Compared with BFO-II sample, it is significantly improved. In addition, Al doping can reduce the band gap of BFO films. This work will be a new idea for the further application of Al doped bismuth ferrite films.

P-E curves of BFO (I, II) and BFAO (I, II) films: (a) for BFO-I and BFAO-I and (b) for BFO-II and BFAO-II.


  • High performance BFO, BFAO thin films were prepared by sol–gel method.

  • The BFO thin films have excellent properties with the mixed solution of 2-methoxyethanol and glacial acetic acid as solvent.

  • Al doping can effectively improve the ferroelectric properties and reduce the band gap width of BFO thin films.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M (2004) Magnetic phase control by an electric field. Nature 430:541–544

    CAS  Article  Google Scholar 

  2. 2.

    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Cheminform 299:1719–1722

    CAS  Google Scholar 

  3. 3.

    Yin RQ, Dai BW, Zheng P, Zhou JJ, Bai WF, Wen F, Deng JX, Zheng L, Du J, Qin HB (2017) Pure-phase BiFeO3 ceramics with enhanced electrical properties prepared by two-step sintering. Ceram Int 43:6467–6471

    CAS  Article  Google Scholar 

  4. 4.

    Azam A, Jawad A, Ahmed AS, Chaman M, Naqvi AH (2011) Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J Alloy Compod 509:2909–2913

    CAS  Article  Google Scholar 

  5. 5.

    Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772

    CAS  Article  Google Scholar 

  6. 6.

    Figueiras FG, Dutta D, Ferreira NM, Costa FM, Graça MPF, Valente MA (2016) Multiferroic interfaces in bismuth ferrite composite fibers grown by laser floating zone technique. Mater Des 90:829–833

    CAS  Article  Google Scholar 

  7. 7.

    Chu YH, Zhan Q, Martin LW, Cruz MP, Yang PL, Pabst GW, Zavaliche F, Yang SY, Zhang JX, Chen LQ, Schlom DG, Lin IN, Wu TB, Ramesh R (2010) Nanoscale domain control in multiferroic BiFeO3 thin films. Adv Mater 18:2307–2311

    Article  Google Scholar 

  8. 8.

    Kumar MM, Palkar VR, Srinivas K, Suryanarayana SV (2000) Ferroelectricity in a pure BiFeO3 ceramic. Appl Phys Lett 76:2764–2766

    CAS  Article  Google Scholar 

  9. 9.

    Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765

    CAS  Article  Google Scholar 

  10. 10.

    Catalan G, Scott JF (2010) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  Google Scholar 

  11. 11.

    Sando D, Barthélémy A, Bibes M (2014) BiFeO3 epitaxial thin films and devices: past, present and future. J Phys-Condens Mat 26:473201

    CAS  Article  Google Scholar 

  12. 12.

    Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG (2004) Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett 84:1731–1733

    CAS  Article  Google Scholar 

  13. 13.

    Mazumder R, Chakravarty D, Bhattacharya D, Sen A (2009) Spark plasma sintering of BiFeO3. Mater Res Bull 44:555–559

    CAS  Article  Google Scholar 

  14. 14.

    Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, Kim WJ, Do D, Jeong IK (2016) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27:6976–6982

    Article  Google Scholar 

  15. 15.

    Cheng CJ, Kan D, Lim SH, McKenzie WR, Munroe PR, Salamanca-Riba LG, Withers RL, Takeuchi I, Nagarajan V (2009) Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm doped BiFeO3 thin films. Phys Rev B 80:014109

    Article  Google Scholar 

  16. 16.

    Xue X, Tan GQ, Ren HJ, Xia A (2013) Structural, electric and multiferroic properties of Sm-doped BiFeO3 thin films prepared by the sol-gel process. Ceram Int 39:6223–6228

    Article  Google Scholar 

  17. 17.

    Muneeswaran M, Lee SH, Kim DH, Jung BS, Chang SH, Jang JW, Choi BC, Jeong JH (2018) Structural, vibrational, and enhanced magneto-electric coupling in Ho-substituted BiFeO3. J Alloy Compound 750:276–285

    CAS  Article  Google Scholar 

  18. 18.

    Lee D, Kim MG, Ryu S, Jang HM (2005) Epitaxially grown La modified BiFeO3 magnetoferroelectric thin films. Appl Phys Lett 86:222903

    Article  Google Scholar 

  19. 19.

    Hu GD, Cheng X, Wu WB, Yang CH (2007) Effects of Gd substitution on structure and ferroelectric properties of BiFeO3 thin films prepared using metal organic decomposition. Appl Phys Lett 91:232909

    Article  Google Scholar 

  20. 20.

    Kan D, Pálová L, Anbusathaiah V, Cheng CJ, Fujino S, Nagarajan V, Rabe KM, Takeuchi I (2010) Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 20:1108–1115

    CAS  Article  Google Scholar 

  21. 21.

    Kim SW, Lee MH, Choi HI, Kim DJ, Park JS, Kim MH, Song TK, Do D, Kim WJ (2013) Leakage current behaviors of SrTiO3 capped Mn-doped polycrystalline BiFeO3 thin film. Ferroelectrics 454:19–22

    CAS  Article  Google Scholar 

  22. 22.

    Wu JG, Wang J, Xiao DQ, Zhu JG (2011) Mn4+: BiFeO3/Zn2+: BiFeO3 bilayered thin films of (1 1 1) orientation. Appl Surf Sci 257:7226–7230

    CAS  Article  Google Scholar 

  23. 23.

    Rong NN, Chu MS, Tang YL, Zhang C, Cui X, He HH, Zhang YH (2016) Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation. J Mater Sci 51:5712–5723

    CAS  Article  Google Scholar 

  24. 24.

    Fan F, Chen CL, Luo BH, Jin KX (2011) The electric transport properties of Al-doped ZnO/BiFeO3/ITO glass heterostructure. J Appl Phys 109:461–464

    Google Scholar 

  25. 25.

    Scott JF (2000) Ferroelectric memories, Springer-Verlag Berlin and Heidelberg GmbH & Co. K

  26. 26.

    Ujimoto K, Yoshimura T, Ashida A, Fujimura N (2012) Direct piezoelectric properties of (100) and (111) BiFeO3 epitaxial thin films. Appl Phys Lett 100:102901

    Article  Google Scholar 

  27. 27.

    Zhang JX, He Q, Trassin M, Luo W, Yi D, Rossell MD, Yu P, You L, Wang CH, Kuo CY (2011) Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys Rev lett 107:147602

    CAS  Article  Google Scholar 

  28. 28.

    Zylberberg J, Belik AA, Takayama-Muromachi E, Ye ZG (2007) Bismuth aluminate: a new high-Tc lead-free piezo-/ferroelectric. Chem Mater 19:6385–6390

    CAS  Article  Google Scholar 

  29. 29.

    Yu ZL, Liu YF, Shen MY, Qian H, Li FF, Lyu YN (2017) Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram Int 43:7653–7659

    CAS  Article  Google Scholar 

  30. 30.

    Wei J, Wu C, Liu Y, Guo Y, Yang T, Wang D, Xu Z, Haumon R (2017) Structural distortion, spin-phonon coupling, interband electronic transition, and enhanced magnetization in rare-earth-substituted bismuth ferrite. Inorg Chem 56:8964–8974

    CAS  Article  Google Scholar 

  31. 31.

    Benali A, Melo BMG, Prezas PR, Bejar M, Dhahri E, Valente MA, Graca MPF, Nogueira BA, Costa BFO (2018) Structural, morphological, raman and ac electrical properties of the multiferroic sol-gel made Bi0.8Er0.1Ba0.1Fe0.96Cr0.02Co0.02O3 material. J Alloy Compound 775:304–315

    Article  Google Scholar 

  32. 32.

    Sati PC, Kumar M, Chhoker S, Jewariya M (2015) Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int 41:2389–2398

    CAS  Article  Google Scholar 

  33. 33.

    Chang LY, Tu CS, Chen PY, Chen CS, Schmidt VH, Wei HH, Huang DJ, Chan TS (2016) Raman vibrations and photovoltaic conversion in rare earth doped (Bi0.93RE0.07)FeO3 (RE = Dy, Gd, Eu, Sm) ceramics. Ceram Int 42:834–842

    CAS  Article  Google Scholar 

  34. 34.

    J. Tauc, Amorphous and liquid semiconductors, Plenum, New York, (1974) pp.171

  35. 35.

    Dong G, Tan G, Luo Y, Luo Y, Liu W, Ren H, Xia A (2014) Structural transformation and multiferroic properties of single-phase Bi(0.89)Tb(0.11)Fe(1-x)MnxO3 thin films. Appl Surf Sci 290:280–286

    CAS  Article  Google Scholar 

  36. 36.

    Zhang DH, Shin P, Wu XQ, Ren W (2013) Structural and electrical properties of sol-gel-derived Al-doped bismuth ferrite thin films. Ceram Int 39:S461–S464

    CAS  Article  Google Scholar 

  37. 37.

    Dai Y, Gao Q, Cui C, Yang L, Li C, Li X (2018) Role of ferroelectric/ferromagnetic layers on the ferroelectric properties of magnetoelectric composite films derived by chemical solution deposition. Mater Res Bull 99:424–428

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant Nos. 52073129 and 51762030).

Author information



Corresponding author

Correspondence to Jian-Qing Dai.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare. This paper is original. Neither the entire paper nor any part of its content has been published. All authors haveverified the manuscript and approved to submit to your journal.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, XL., Dai, JQ., Zhang, CC. et al. Effects of solvents and Al doping on structure and physical properties of BiFeO3 thin films. J Sol-Gel Sci Technol (2021). https://doi.org/10.1007/s10971-021-05489-y

Download citation


  • BiFeO3 thin films
  • Al doping
  • Spin coating
  • Physical property