Effect of heating rate on structure, morphology and photocatalytic properties of TiO2 particles: thermal kinetic and thermodynamic studies


In this study, TiO2 powders were produced via sol–gel route at 500 °C for 2 h with distinct heating rates. TGA-DTA, XRD, SEM, Raman spectroscopy, XPS, UV–vis spectroscopy and photoluminescence characterization techniques were carried out for TiO2 powders. Photocatalytic efficiency of TiO2 powders on degradation of methylene blue (MB) solution was examined in terms of different heating rates. Thermodynamic and non-isothermal kinetic study of TiO2 powders were estimated. TiO2 powders showed anatase phase based on XRD results. Surface morphology of TiO2 powders did not change with different heating rates. It can be concluded that heating rate played important role on band gap and photocatalytic activity. The band gap of the TiO2 particles decreased from 3.25 to 2.95 with increasing heating rate. The photocatalytic activity results exhibit that T1 powders have the highest photocatalytic performances. The kinetic constant and photocatalytic degradation rate were 0.00678 min−1 and 83.48%, respectively. This could be attributed to high crystalline structure and low bulk vacancies or defects. Furthermore, TiO2 powders showed good stability. This study exhibited a new way to enhance the photocatalytic performances of pure TiO2 powders.


  • TiO2 powders were fabricated by sol–gel process at various heating rate regime.

  • Effect of the heating rate on structure, morphology and photocatalytic properties was investigated.

  • Non-isothermal and thermodynamic parameters of TiO2 powders were studied.

  • T1 sample exhibited the excellent photocatalytic efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Bizarro M et al. (2009) Photocatalytic activity enhancement of TiO2 films by micro and nano-structured surface modification. Appl Surf Sci 255(12):6274–6278

    CAS  Article  Google Scholar 

  2. 2.

    Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1(1):1–21

    CAS  Article  Google Scholar 

  3. 3.

    Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    CAS  Article  Google Scholar 

  4. 4.

    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    CAS  Article  Google Scholar 

  5. 5.

    Saravanan, R., F. Gracia, and A. Stephen, Basic Principles, Mechanism, and Challenges of Photocatalysis, in Nanocomposites for Visible Light-induced Photocatalysis, M. M. Khan, D. Pradhan, and Y. Sohn, Editors. 2017, Springer International Publishing: Cham. p. 19–40.

  6. 6.

    Hirakawa T, Nosaka Y (2008) Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J Phys Chem C 112(40):15818–15823

    CAS  Article  Google Scholar 

  7. 7.

    Kansal SK, Singh M, Sud D (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater 141(3):581–590

    CAS  Article  Google Scholar 

  8. 8.

    Andronic L et al. (2009) Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes. Chem Eng J 152(1):64–71

    CAS  Article  Google Scholar 

  9. 9.

    Liu Y et al. (2013) Study on enhanced photocatalytic performance of cerium doped TiO2-based nanosheets. Chem Eng J 219:478–485

    CAS  Article  Google Scholar 

  10. 10.

    Sakulkhaemaruethai S et al. (2005) Photocatalytic activity of titania nanocrystals prepared by surfactant-assisted templating method—Effect of calcination conditions. Mater Lett 59(23):2965–2968

    CAS  Article  Google Scholar 

  11. 11.

    Chen Y et al. (2018) Preparation and photocatalytic performance Of F-TiO2 photocatalyst. IOP Conf Ser: Earth Environ Sci 189:032005

    Article  Google Scholar 

  12. 12.

    Li D et al. (2019) Nanostructure and photocatalytic properties of TiO2 films deposited at low temperature by pulsed PECVD. Appl Surf Sci 466:63–69

    CAS  Article  Google Scholar 

  13. 13.

    Chen J et al. (2015) Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl Catal A: Gen 495:131–140

    CAS  Article  Google Scholar 

  14. 14.

    Hadi A et al. (2018) Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells. Appl Surf Sci 428:1089–1097

    CAS  Article  Google Scholar 

  15. 15.

    Fan Y et al. (2011) Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids Surf B: Biointerfaces 83(1):78–82

    CAS  Article  Google Scholar 

  16. 16.

    Jaafar SNH et al. (2017) Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: an overview. Renew Sustain Energy Rev 78:698–709

    CAS  Article  Google Scholar 

  17. 17.

    Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46(4):855–874

    CAS  Article  Google Scholar 

  18. 18.

    Zhang J et al. (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16(38):20382–20386

    CAS  Article  Google Scholar 

  19. 19.

    Regonini D et al. (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng: R: Rep 74(12):377–406

    Article  Google Scholar 

  20. 20.

    Yildiz ZK et al. (2019) Enhancement of efficiency of natural and organic dye sensitized solar cells using thin film TiO2 photoanodes fabricated by spin-coating. J Photochemistry Photobiol A: Chem 368:23–29

    CAS  Article  Google Scholar 

  21. 21.

    Mamaghani AH, Haghighat F, Lee C-S (2019) Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere 219:804–825

    CAS  Article  Google Scholar 

  22. 22.

    Dubey RS (2018) Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater Lett 215:312–317

    CAS  Article  Google Scholar 

  23. 23.

    Keddie JL, Giannelis EP (1991) Effect of heating rate on the sintering of titanium dioxide thin films: competition between densification and crystallization. J Am Ceram Soc 74(10):2669–2671

    CAS  Article  Google Scholar 

  24. 24.

    Galizia P, Maizza G, Galassi C (2016) Heating rate dependence of anatase to rutile transformation. Process Application Ceram 10(4):235–241

    CAS  Article  Google Scholar 

  25. 25.

    Sierra-Uribe H, Cordoba-Tuta EM, Acevedo-Pena P (2017) The effect of the heating rate on anatase crystal orientation and its impact on the photoelectrocatalytic performance of TiO2 nanotube arrays. J Electrochem Soc 164(6):H279–H285

    CAS  Article  Google Scholar 

  26. 26.

    Demirci S et al. (2016) Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Appl Surf Sci 390:591–601

    CAS  Article  Google Scholar 

  27. 27.

    Çepelioğullar Ö, Haykırı-Açma H, Yaman S (2016) Kinetic modelling of RDF pyrolysis: model-fitting and model-free approaches. Waste Manag 48:275–284

    Article  CAS  Google Scholar 

  28. 28.

    Flynn JHF, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand 70A:487–523. https://doi.org/10.6028/jres.070A.043

  29. 29.

    Ozawa T (1965) A new method analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/bcsj.38.1881

  30. 30.

    Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404(1):163–176

    CAS  Article  Google Scholar 

  31. 31.

    Mahmood A, Tezcan F, Kardaş G (2018) Thermal decomposition of sol-gel derived Zn0.8Ga0.2O precursor-gel: A kinetic, thermodynamic, and DFT studies. Acta Materialia 146:152–159

    CAS  Article  Google Scholar 

  32. 32.

    Zhu M et al. (2015) New method to synthesize s-doped tio2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation. ACS Sustain Chem Eng 3(12):3123–3129

    CAS  Article  Google Scholar 

  33. 33.

    Samsudin EM et al. (2016) Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl Surf Sci 370:380–393

    CAS  Article  Google Scholar 

  34. 34.

    Batakrushna S et al. (2014) Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures. J Phys D: Appl Phys 47(21):215302

    Article  CAS  Google Scholar 

  35. 35.

    Shin SW et al. (2015) Visible light absorbing TiO2 nanotube arrays by sulfur treatment for photoelectrochemical water splitting. J Phys Chem C 119(24):13375–13383

    CAS  Article  Google Scholar 

  36. 36.

    Hossain MK et al. (2018) A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik 171:507–516

    CAS  Article  Google Scholar 

  37. 37.

    Tripathi AK et al. (2013) Study of structural transformation in TiO2 nanoparticles and its optical properties. J Alloy Compd 549:114–120

    CAS  Article  Google Scholar 

  38. 38.

    Zeng L et al. (2014) Comparative study on the visible light driven photocatalytic activity between substitutional nitrogen doped and interstitial nitrogen doped TiO2. Appl Catal A: Gen 488:239–247

    CAS  Article  Google Scholar 

  39. 39.

    Viet PV et al. (2018) Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method. J Photochemistry Photobiol A: Chem 352:106–112

    CAS  Article  Google Scholar 

  40. 40.

    Sethi D et al. (2014) Synthesis and characterization of titania nanorods from ilmenite for photocatalytic annihilation of E. coli. J Photochemistry Photobiol B: Biol 140:69–78

    CAS  Article  Google Scholar 

  41. 41.

    Ilie AG et al. (2017) Principal component analysis of Raman spectra for TiO2 nanoparticle characterization. Appl Surf Sci 417:93–103

    CAS  Article  Google Scholar 

  42. 42.

    Alhomoudi IA, Newaz G (2009) Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 517(15):4372–4378

    CAS  Article  Google Scholar 

  43. 43.

    Rajender G, Giri PK (2016) Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling. J Alloy Compd 676:591–600

    CAS  Article  Google Scholar 

  44. 44.

    Isari AA et al. (2018) Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl Surf Sci 462:549–564

    CAS  Article  Google Scholar 

  45. 45.

    Chen Y et al. (2019) The fabrication of self-floating Ti3+/N co-doped TiO2/diatomite granule catalyst with enhanced photocatalytic performance under visible light irradiation. Appl Surf Sci 467-468:514–525

    CAS  Article  Google Scholar 

  46. 46.

    Lakhera SK et al. (2018) Enhanced photocatalytic degradation and hydrogen production activity of in situ grown TiO2 coupled NiTiO3 nanocomposites. Appl Surf Sci 449:790–798

    CAS  Article  Google Scholar 

  47. 47.

    Chen G et al. (2019) Insight into the Z-scheme heterostructure WO3/g-C3N4 for enhanced photocatalytic degradation of methyl orange. Mater Lett 236:596–599

    CAS  Article  Google Scholar 

  48. 48.

    Zhu Y et al. (2019) Tunable Type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. Appl Catal B: Environ 244:814–822

    CAS  Article  Google Scholar 

  49. 49.

    Truppi A et al. (2019) Gram-scale synthesis of UV–vis light active plasmonic photocatalytic nanocomposite based on TiO2/Au nanorods for degradation of pollutants in water. Appl Catal B: Environ 243:604–613

    CAS  Article  Google Scholar 

  50. 50.

    Liu X et al. (2018) Influence of TiO2 morphology on adsorption-photocatalytic efficiency of TiO2-graphene composites for methylene blue degradation. J Environ Chem Eng 6(4):4899–4907

    CAS  Article  Google Scholar 

  51. 51.

    Xu Z, Kan Y, Liu C (2018) Aspect ratio control and photocatalytic properties analysis of anatase TiO2 nanoparticles. Mater Res Bull 107:80–86

    CAS  Article  Google Scholar 

  52. 52.

    Joy J, Mathew J, George SC (2018) Nanomaterials for photoelectrochemical water splitting–review. Int J Hydrog Energy 43(10):4804–4817

    CAS  Article  Google Scholar 

  53. 53.

    Fhoula M et al. (2019) Morphological, spectroscopic and photocatalytic properties of Eu3+:TiO2 synthesized by solid-state and hydrothermal-assisted sol-gel processes. Ceram Int 45(3):3675–3679

    CAS  Article  Google Scholar 

  54. 54.

    Jiang C et al. (2017) Photoelectrochemical devices for solar water splitting–materials and challenges. Chem Soc Rev 46(15):4645–4660

    CAS  Article  Google Scholar 

  55. 55.

    Dikici T, Demirci S, Erol M (2017) Enhanced photocatalytic activity of micro/nano textured TiO2 surfaces prepared by sandblasting/acid-etching/anodizing process. J Alloy Compd 694:246–252

    CAS  Article  Google Scholar 

  56. 56.

    Liu H et al. (2015) Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ Sci 8(1):286–296

    CAS  Article  Google Scholar 

  57. 57.

    Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B: Environ 49(1):1–14

    CAS  Article  Google Scholar 

  58. 58.

    Qin G et al. (2019) Rational fabrication of plasmonic responsive N-Ag-TiO2-ZnO nanocages for photocatalysis under visible light. J Alloy Compd 772:885–899

    CAS  Article  Google Scholar 

  59. 59.

    Demirci S et al. (2018) Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances. J Hazard Mater 345:27–37

    CAS  Article  Google Scholar 

  60. 60.

    Oppong SO-B, Opoku F, Govender PP (2019) Tuning the electronic and structural properties of Gd-TiO2-GO nanocomposites for enhancing photodegradation of IC dye: The role of Gd3+ ion. Appl Catal B: Environ 243:106–120

    CAS  Article  Google Scholar 

  61. 61.

    Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environm Sci 2(53):1–13

  62. 62.

    Yildirim S et al. (2016) Structural and luminescence properties of undoped, Nd3+ and Er3+ doped TiO2 nanoparticles synthesized by flame spray pyrolysis method. Ceram Int 42(9):10579–10586

    CAS  Article  Google Scholar 

  63. 63.

    Cao Y et al. (2018) Mesoporous black TiO2-x/Ag nanospheres coupled with g-C3N4 nanosheets as 3D/2D ternary heterojunctions visible light photocatalysts. J Hazard Mater 343:181–190

    CAS  Article  Google Scholar 

  64. 64.

    Fujihara K et al. (2000) Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J Photochemistry Photobiol A: Chem 132(1):99–104

    CAS  Article  Google Scholar 

  65. 65.

    Sheng Y et al. (2019) Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl Surf Sci 465:154–163

    CAS  Article  Google Scholar 

  66. 66.

    Niu X et al. (2019) Hydrothermal synthesis of Mo-C co-doped TiO2 and coupled with fluorine-doped tin oxide (FTO) for high-efficiency photodegradation of methylene blue and tetracycline: effect of donor-acceptor passivated co-doping. Appl Surf Sci 466:882–892

    CAS  Article  Google Scholar 

  67. 67.

    Wang Y et al. (2019) TiO2 nanorod array film decorated with rGO nanosheets for enhancing photocatalytic and photoelectrochemical properties. J Alloy Compd 770:243–251

    CAS  Article  Google Scholar 

  68. 68.

    Alamelu K et al. (2018) Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Appl Surf Sci 430:145–154

    CAS  Article  Google Scholar 

  69. 69.

    Reddy KR et al. (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    CAS  Article  Google Scholar 

  70. 70.

    Khedr TM et al. (2019) Highly efficient solar light-assisted TiO2 nanocrystalline for photodegradation of ibuprofen drug. Optical Mater 88:117–127

    CAS  Article  Google Scholar 

  71. 71.

    Tbessi I et al. (2019) Silver and manganese co-doped titanium oxide aerogel for effective diclofenac degradation under UV-A light irradiation. J Alloy Compd 779:314–325

    CAS  Article  Google Scholar 

  72. 72.

    Lee J et al. (2018) Ti3+ self-doped TiO2 via facile catalytic reduction over Al(acac)3 with enhanced photoelectrochemical and photocatalytic activities. Appl Catal B: Environ 224:715–724

    CAS  Article  Google Scholar 

  73. 73.

    Singh R, Dutta S (2018) Synthesis and characterization of solar photoactive TiO2 nanoparticles with enhanced structural and optical properties. Adv Powder Technol 29(2):211–219

    CAS  Article  Google Scholar 

  74. 74.

    Khan H et al. (2018) Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Appl Catal B: Environ 226:311–323

    CAS  Article  Google Scholar 

  75. 75.

    Gomathi Thanga Keerthana B, Murugakoothan P (2019) Synthesis and characterization of CdS/TiO2 nanocomposite: Methylene blue adsorption and enhanced photocatalytic activities. Vacuum 159:476–481

    CAS  Article  Google Scholar 

  76. 76.

    Martins AC et al. (2017) Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram Int 43(5):4411–4418

    CAS  Article  Google Scholar 

  77. 77.

    Belver C et al. (2016) Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures. Catal Today 266:36–45

    CAS  Article  Google Scholar 

  78. 78.

    Lee D-H et al. (2019) One-pot wet chemical synthesis of fluorine-containing TiO2 nanoparticles with enhanced photocatalytic activity. Mater Res Bull 109:227–232

    CAS  Article  Google Scholar 

  79. 79.

    Kudhier MA, Sabry RS, Al-Haidarie YK (2018) Novel and simple method to synthesize donut-like TiO2 with photocatalytic activity. Mater Sci Semiconductor Process 73:35–41

    CAS  Article  Google Scholar 

  80. 80.

    Wang S et al. (2019) Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity. Appl Surf Sci. 467-468:45–55

    CAS  Article  Google Scholar 

Download references


We are indebted to Marmara University, Dokuz Eylul University and Katip Çelebi University for infrastructural support.

Author information



Corresponding author

Correspondence to Selim Demirci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dikici, T., Demirci, S., Tünçay, M.M. et al. Effect of heating rate on structure, morphology and photocatalytic properties of TiO2 particles: thermal kinetic and thermodynamic studies. J Sol-Gel Sci Technol (2021). https://doi.org/10.1007/s10971-020-05466-x

Download citation


  • Sol–gel
  • Heating rate
  • Non-isothermal kinetic
  • Thermodynamic properties
  • Photocatalytic activity