Comparative study of TEOS-consolidants for adobe building conservation

Abstract

Four different consolidants for adobe buildings conservation were synthetized and evaluated. Adobe bricks materials tested from several Mining Haciendas of the seventeenth and eighteenth centuries located in Guanajuato, Mexico; these materials were characterized using XRD analysis, granulometry, porosity, moisture content, and mechanical resistance. The four consolidants synthetized are formulations based on TEOS (F1); TEOS with silica nanoparticles (F2); TEOS with PDMS-OH (F3) and hybrid consolidant formed by TEOS, PDMS, and nanoparticle silica (F4). The consolidants were tested and evaluated by porosity changes, absorption, and durability. The results show that colloidal silica improves the fulfill porosity by TEOS gels and the PDMS improves the flexibility on TEOS gel avoiding the crack. Thus, the addition of both components to TEOS gel results as an excellent consolidant treatment to adobe materials.

Highlights

  • TEOS and different additives are proposed as adobe conservation treatment.

  • Mechanical resistance increases according to the additive consolidant treatment.

  • The different additives shown different penetration capacity that modify the consolidant process.

  • PDMS additive increases the chemical stability on TEOS consolidant.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3: N2 adsorption–desorption isotherm for TEOS-consolidants for each formulation synthetized.
Fig. 4: Pore distribution for the synthesized TEOS-consolidant gels.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Costa C, Cerqueira A, Rocha F, Velosa A (2019) The sustainability of adobe construction: past to future. Int J Archit Herit 13:639–647. https://doi.org/10.1080/15583058.2018.1459954

    Article  Google Scholar 

  2. 2.

    Costi de Castrillo M, Philokyprou M, Ioannou I (2017) Comparison of adobes from pre-history to-date. J Archaeol Sci Rep. 12:437–448. https://doi.org/10.1016/j.jasrep.2017.02.009

    Article  Google Scholar 

  3. 3.

    Balsam W, Deaton B, Adler M (2007) Analysis of adobe wall composition at the Chaves—Hummingbird Site, New Mexico, by diffuse reflectance spectrophotometry. Geoarchaeology 22:825–844. https://doi.org/10.1002/gea.20197

    Article  Google Scholar 

  4. 4.

    Ouedraogo M, Dao K, Millogo Y, Aubert JE, Messan A, Seynou M, Zerbo L, Gomina M (2019) Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw. J Build Eng 23:250–258. https://doi.org/10.1016/j.jobe.2019.02.005

  5. 5.

    Cividini A (2007) Geomechanical characterization of some adobe materials. Procedia Struct Integr 5:1072–1077. https://doi.org/10.1016/j.prostr.2017.07.079

    Article  Google Scholar 

  6. 6.

    Andrejkovicová S, Alves C, Velosa A, Rocha F (2015) Bentonite as a natural additive for lime and lime–metakaolin mortars used for restoration of adobe buildings. Cem Concr Compos 60:99–110. https://doi.org/10.1016/j.cemconcomp.2015.04.005

    CAS  Article  Google Scholar 

  7. 7.

    Costa CS, Rocha F, Varum H, Velosa A (2013) Influence of the mineralogical composition on the properties of adobe blocks from Aveiro Portugal. Clay Miner 48:749–758. https://doi.org/10.1180/claymin.2013.048.5.07

    CAS  Article  Google Scholar 

  8. 8.

    Li-Piani T, Krabbenborg D, Weerheijm J, Koene L, Sluijs LJ (2018) The mechanical performance of traditional adobe masonry components: an experimental-analytical characterization of soil bricks and mud mortar. J Green Build 13:17–44. https://doi.org/10.3992/1943-4618.13.3.17

    Article  Google Scholar 

  9. 9.

    Uguryol M, Kulakoglu F (2013) A preliminary study for the characterization of Kültepe’s adobe soils with the purpose of providing data for conservation and archaeology. J Cult Herit 14:e117–e124. https://doi.org/10.1016/j.culher.2012.12.008

    Article  Google Scholar 

  10. 10.

    Xu F, Zeng W, Li D (2019) Recent advance in alkoxysilane-based consolidants for stone. Prog Org Coat 127:45–54. https://doi.org/10.1016/j.porgcoat.2018.11.003

    CAS  Article  Google Scholar 

  11. 11.

    Peng X, Wang Y, Ma X et al. (2020) Sol–Gel derived hybrid of materials for conservation fossils. J Sol-Gel Sci Technol 94:347–355. https://doi.org/10.1007/s10971-020-05242-x

    CAS  Article  Google Scholar 

  12. 12.

    Franzoni E, Graziani G, Sassoni E (2015) TEOS-based treatments for stone consolidation: acceleration of hydrolysis–condensation reactions by poulticing. J Sol-Gel Sci Technol 74:398–405. https://doi.org/10.1007/s10971-014-3610-3

    CAS  Article  Google Scholar 

  13. 13.

    Wheeler G (2005) The chemistry and physics of alkoxysilanes and their gels. In: Alkoxysilanes and consolidation of stone. The Getty Conservation Institute, Los Angeles

  14. 14.

    Brus J, Kotlík P (1996) Cracking of organosilicone stone consolidants in gel form. Stud Conserv 41:55–59. https://doi.org/10.2307/1506552

    CAS  Article  Google Scholar 

  15. 15.

    Mosquera M, Pozo J, Esquivias L (2003) Stress during drying of two stone consolidants applied in monumental conservation. J Sol-Gel Sci Technol 26:1227–1231. https://doi.org/10.1023/A:1020776622689

    CAS  Article  Google Scholar 

  16. 16.

    Barberena-Fernández AM, Blanco-Varela MT, Carmona-Quiroga PM (2019) Use of nanosilica- or nanolime-additioned TEOS to consolidate cementitious materials in heritage structures: physical and mechanical properties of mortars. Cem Concr Compos 95:271–276. https://doi.org/10.1016/j.cemconcomp.2018.09.011

    CAS  Article  Google Scholar 

  17. 17.

    Xu F, Li D, Zhang Q, Zhang H, Xu J (2012) Effects of addition of colloidal silica particles on TEOS-based stone protection using n-octylamine as a catalyst. Prog Org Coat 75:429–434. https://doi.org/10.1016/j.porgcoat.2012.07.001

    CAS  Article  Google Scholar 

  18. 18.

    Pozo-Antonio JS, Otero J, Alonso P, Mas X, Barberá I (2019) Nanolime- and nanosilica-based consolidants applied on heated granite and limestone: Effectiveness and durability. Constr Build Mater 201:852–870. https://doi.org/10.1016/j.conbuildmat.2018.12.213

    CAS  Article  Google Scholar 

  19. 19.

    Liu R, Han X, Huang X (2013) Preparation of three-component TEOS-based composites for stone conservation by sol–gel process. J Sol-Gel Sci Technol 68:19–30. https://doi.org/10.1007/s10971-013-3129-z

    CAS  Article  Google Scholar 

  20. 20.

    Remzova M, Sasek P, Frankeova D, Slizkova Z, Rathousky J (2016) Effect of modified ethylsilicate consolidants on the mechanical properties of sandstone. Constr Build Mater 112:674–681. https://doi.org/10.1016/j.conbuildmat.2016.03.001

    CAS  Article  Google Scholar 

  21. 21.

    Luo Y, Xiao L, Zhang X (2015) Characterization of TEOS/PDMS/HA nanocomposites for application as consolidant/hydrophobic products on sandstones. J Cult Herit 16:470–478. https://doi.org/10.1016/j.culher.2014.08.002

    Article  Google Scholar 

  22. 22.

    Liu Y, Liu J (2016) Synthesis of TEOS/PDMS-OH/CTAB composite coating material as a new stone consolidant formulation. Constr Build Mater 122:90–94. https://doi.org/10.1016/j.conbuildmat.2016.06.069

    CAS  Article  Google Scholar 

  23. 23.

    Xu F, Li D (2013) Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone protective materials. J Sol-Gel Sci Technol 65:212–219. https://doi.org/10.1007/s10971-012-2926-0

    CAS  Article  Google Scholar 

  24. 24.

    Kim EK, Won J, Do JY, Kim SD, Kang YS (2009) Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J Cult Herit 10:214–221. https://doi.org/10.1016/j.culher.2008.07.008

    Article  Google Scholar 

  25. 25.

    Xu F, Li D, Zhang H, Peng W (2012) TEOS/HDTMS inorganic–organic hybrid compound used for stone protection. J Sol-Gel Sci Technol 61:429–453. https://doi.org/10.1007/s10971-011-2643-0

    CAS  Article  Google Scholar 

  26. 26.

    Son S, Won J, Kim JJ, Jang YD, Kang YS, Kim SD (2009) Organic-inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservationof stone heritage. ACS Appl Mater Interfaces 1:393–40. https://doi.org/10.1021/am800105t

    CAS  Article  Google Scholar 

  27. 27.

    Zarraga R, Cervantes J, Salazar-Hernández C, Wheeler G (2010) Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J Cult Herit 11:138–144. https://doi.org/10.1016/j.culher.2009.07.002

    Article  Google Scholar 

  28. 28.

    Salazar-Hernández C, Cervantes J, Puy-Alquiza MJ, Miranda R (2015) Conservation of building materials of historic monuments using a hybrid formulation. J Cult Herit 16:185–191. https://doi.org/10.1016/j.culher.2014.05.004

    Article  Google Scholar 

  29. 29.

    Salazar-Hernández C, Puy-Alquiza MJ, Salgado P, Cervantes J (2010) TEOS–colloidal silica–PDMS-OH hybrid formulation used for stone consolidation. Appl Organomet Chem 24:481–488. https://doi.org/10.1002/aoc.1646

    CAS  Article  Google Scholar 

  30. 30.

    Wong YJ, Zhu L, Teo WS, Tan YW, Yang Y, Wang CH, Chen H (2011) Revisiting the stöber method: inhomogeneity in silica shells. J Am Chem Soc 133:11422–11425. https://doi.org/10.1021/ja203316q

    CAS  Article  Google Scholar 

  31. 31.

    American Society for Testing and Materials (ASTM), ASTM D2487 Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), In: ASTM Book of Standards Volume 04.08, West Conshohocken, PA, 2011

  32. 32.

    UNE-EN 1936: 1999: “Métodos de ensayo para piedra natural. Determinación de la densidad real y aparente y de la porosidad abierta y total”. AENOR.Madrid. p. 11, (1999)

  33. 33.

    Reunion Internationale des Laboratoires D’Essais et de Recherches sur les Materiaux et les Constructions (RILEM), Recommandations provisoires de la commission 25-PEM Protection et érosion des monuments. Essais recommandés pour mesurer l’alteration des pierres et évaluer l’efficacite des méthodes de traitement, in: Matériaux de Constructions, vol. 13, No. 75, RILEM, Paris, 1980

  34. 34.

    Battisha IK, El Beyally A, El Mongy SA, Nahrawi AM (2007) Development of the FTIR properties of nano-structure silica gel doped with different rare earth elements, prepared by sol-gel route. J Sol-Gel Sci Technol 41:129–137. https://doi.org/10.1007/s10971-006-0520-z

    CAS  Article  Google Scholar 

  35. 35.

    Launer PJ, Arkles B (ed.), Infrared Analysis of Organosilicon Compounds: Spectra Structure Correlation Silicon Compounds, Gelest Inc, Morrisville, PA, 1987

  36. 36.

    Sing K (2001) The use of nitrogen adsorption for the characterisation of porous material. Colloid Surf A Physicochem Eng Asp 187-188:3–9. https://doi.org/10.1016/S0927-7757(01)00612-4

    CAS  Article  Google Scholar 

  37. 37.

    Salazar-Hernández C, Zárraga R, Alonso S, Sugita S, Calixto S, Cervantes J (2009) Effect of solvent type on polycondensation of TEOS catalyzed by DBTL as used for stone consolidation. J Sol-Gel Sci Technol 49:301–310. https://doi.org/10.1007/s10971-008-1879-9

    CAS  Article  Google Scholar 

  38. 38.

    Salazar-Hernández C, Cervantes J, Alonso S (2010) Viscoelastic characterization of TEOS sols in three different solvents when DBTL is used as polycondensation catalyst. J Sol-Gel Sci Technol 54:77–82. https://doi.org/10.1007/s10971-010-2160-6

    CAS  Article  Google Scholar 

  39. 39.

    Puy-Alquiza MJ, Miranda-Avilés R, Ordaz-Zubia VY, Moncada CD, Zanor GA, Salazar-Hernández MC, Li Y, Loza-Aguirre I (2019) The mine tailings as construction material in the viceregal period: case study in Guanajuato City, Mexico. Bol de la Soc Geol Mexicana 71:543–564. https://doi.org/10.18268/BSGM2019v71n2a18

    Article  Google Scholar 

  40. 40.

    Heidari M, Torabi-Kaveh M, Mohseni H (2017) Assessment of the effects of freeze–thaw and salt crystallization ageing tests on Anahita Temple Stone, Kangavar, West of Iran. Geotech Geol Eng 35:121–136. https://doi.org/10.1007/s10706-016-0090-y

    Article  Google Scholar 

  41. 41.

    Brown PW, Robbins CR, Clifton JR (1979) Adobe II: factors affecting the durability of adobe structures. Stud Conserv 24:23–39. https://doi.org/10.1179/sic.1979.003

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish would acknowledge to LICAMM-UG (Laboratorio de Caracterización de Materiales y Minerales del Departamento de Ingeniería en Minas, Metalurgia y Geología. Guanajuato University) for technical support in SEM analysis.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Carmen Salazar-Hernández or María Jesús Puy-Alquiza.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salazar-Hernández, C., Puy-Alquiza, M.J., Miranda-Avilés, R. et al. Comparative study of TEOS-consolidants for adobe building conservation. J Sol-Gel Sci Technol (2021). https://doi.org/10.1007/s10971-020-05461-2

Download citation

Keywords

  • TEOS consolidant
  • Colloidal silica
  • PDMS-OH
  • DBTL
  • SiO2 synthesis