• Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:

SiO2/silicone hybrid superhydrophobic coating on gypsum-based materials with self-cleaning and moisture resistance


Gypsum materials are suffering a shortened service life on account of its poor resistance to moisture and dirt. To overcome such drawbacks, the SiO2/silicone hybrid superhydrophobic surface was introduced on the gypsum surface by the cross-linking of siloxane via sol–gel method. In this study, chemical property and microtopography of the coated surface were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscope (AFM), respectively. Wettability and moisture absorption/desorption tests were carried out to evaluate the superhydrophobicity and moisture resistance of the samples. The results showed that the treated gypsum board had a lower moisture absorption/desorption ratio, compared with the untreated gypsum board (PG). Besides, the coating agent prepared with ethanol and hydrophilic nanosilica particles provided good superhydrophobicity and an optimum moisture-resistance property to the gypsum board. The prepared superhydrophobic surface can endow the material with a self-cleaning effect, protecting it from dust and liquid contamination. The effect mechanism of the solvent and silica particle property on the moisture resistance was discussed in detail. Herein, a green approach is proposed to produce a cleaner gypsum product with extended service life.


  • SiO2/silicone hybrid superhydrophobic gypsum board was obtained via sol–gel method.

  • Superhydrophobicity endowed gypsum board with moisture resistance and self-cleaning effect.

  • The sample with ethanol and hydrophilic silica had the lowest moisture absorption ratio.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 201:1–8

    Article  Google Scholar 

  2. 2.

    Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677. https://doi.org/10.1006/anbo.1997.0400

    Article  Google Scholar 

  3. 3.

    Patankar NA (2004) Mimicking the lotus effect_influence of double roughness structures and slender pillars. Langmuir 20:8209–8213

    CAS  Article  Google Scholar 

  4. 4.

    Luo X, Weng Y, Wang S, Du J, Wang H, Xu C (2019) Superhydrophobic and oleophobic textiles with hierarchical micro-nano structure constructed by sol–gel method. J Sol-Gel Sci Technol 89:820–829. https://doi.org/10.1007/s10971-019-04927-2

    CAS  Article  Google Scholar 

  5. 5.

    Sun J, Shi X, Du Y, Wu Y (2019) A robust, flexible superhydrophobic sheet fabricated by in situ growth of micro-nano-SiO2 particles from cured silicone rubber. J Sol-Gel Sci Technol 91:208–215. https://doi.org/10.1007/s10971-019-05010-6

    CAS  Article  Google Scholar 

  6. 6.

    Bellanger H, Darmanin T, de Givenchy ET, Guittard F (2014) Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem Rev 114:2694–2716. https://doi.org/10.1021/cr400169m

    CAS  Article  Google Scholar 

  7. 7.

    Qiu X, Yang Z, Wu H, Guo J, Zhang Z, Feng J, Chai G, Liu A (2018) Excellent oil-water separation under external pressure: Controllable critical pressure and separation efficiency by well-designed hierarchical mesh structure. Appl Surf Sci 456:602–608. https://doi.org/10.1016/j.apsusc.2018.06.178

    CAS  Article  Google Scholar 

  8. 8.

    Jia S, Deng S, Luo S, Qing Y, Yan N, Wu Y (2019) Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings. Appl Surf Sci 466:84–91. https://doi.org/10.1016/j.apsusc.2018.10.017

    CAS  Article  Google Scholar 

  9. 9.

    Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem-Int Ed 54:3387–3399. https://doi.org/10.1002/anie.201409911

    CAS  Article  Google Scholar 

  10. 10.

    Guo M-Z, Maury-Ramirez A, Poon CS (2016) Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. J Clean Prod 112:3583–3588. https://doi.org/10.1016/j.jclepro.2015.10.079

    CAS  Article  Google Scholar 

  11. 11.

    Das S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) A review on superhydrophobic polymer nanocoatings: recent development and applications. Ind Eng Chem Res 57:2727–2745. https://doi.org/10.1021/acs.iecr.7b04887

    CAS  Article  Google Scholar 

  12. 12.

    Medeiros M, Helene P (2008) Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Mater Struct 41:59–71. https://doi.org/10.1617/s11527-006-9218-5

    CAS  Article  Google Scholar 

  13. 13.

    Horgnies M, Chen JJ (2014) Superhydrophobic concrete surfaces with integrated microtexture. Cem Concr Compos 52:81–90. https://doi.org/10.1016/j.cemconcomp.2014.05.010

    CAS  Article  Google Scholar 

  14. 14.

    Zheng D-D, Ji T, Wang C-Q, Sun C-J, Lin X-J, Hossain KMA (2016) Effect of the combination of fly ash and silica fume on water resistance of magnesium-potassium phosphate cement. Constr Build Mater 106:415–421. https://doi.org/10.1016/j.conbuildmat.2015.12.085

    CAS  Article  Google Scholar 

  15. 15.

    She W, Wang X, Miao C, Zhang Q, Zhang Y, Yang J, Hong J (2018) Biomimetic superhydrophobic surface of concrete: topographic and chemical modification assembly by direct spray. Constr Build Mater 181:347–357. https://doi.org/10.1016/j.conbuildmat.2018.06.063

    CAS  Article  Google Scholar 

  16. 16.

    Li J, Li G, Yu Y (2007) The influences of gypsum water-proofing additive on gypsum crystal growth. Mater Lett 61:872–876. https://doi.org/10.1016/j.matlet.2006.06.005

    CAS  Article  Google Scholar 

  17. 17.

    Pervyshin GN, Yakovlev GI, Gordina AF, Keriene J, Polyanskikh IS, Fischer HB, Rachimova NR, Buryanov AF (2017) Water-resistant gypsum compositions with man-made modifiers. In: Juozapaitis A, Daniunas A, Zavadskas EK (eds) Modern building materials, structures and techniques, vol 172. Procedia Engineering, pp 867–874. https://doi.org/10.1016/j.proeng.2017.02.087

  18. 18.

    Muhammad NZ, Keyvanfar A, Majid MZA, Shafaghat A, Mirza J (2015) Waterproof performance of concrete: a critical review on implemented approaches. Constr Build Mater 101:80–90

    Article  Google Scholar 

  19. 19.

    Zhang M, Chen M, Fan T, Zhao F (2015) Improving waterproof property of gypsum block with organic-inorganic compound materials. In 2nd International Conference on Material Engineering and Application. 707–711

  20. 20.

    Wu Q, Ma H, Chen Q, Gu B, Li S, Zhu H (2019) Effect of silane modified styrene-acrylic emulsion on the waterproof properties of flue gas desulfurization gypsum. Constr Build Mater 197:506–512. https://doi.org/10.1016/j.conbuildmat.2018.11.185

    CAS  Article  Google Scholar 

  21. 21.

    Liu P, Gao Y, Wang F, Yang J, Yu X, Zhang W, Yang L (2017) Superhydrophobic and self-cleaning behavior of Portland cement with lotus-leaf-like microstructure. J Clean Prod 156:775–785. https://doi.org/10.1016/j.jclepro.2017.03.211

    CAS  Article  Google Scholar 

  22. 22.

    Zulfiqar U, Awais M, Hussain SZ, Hussain I, Husain SW, Subhani T (2017) Durable and self-healing superhydrophobic surfaces for building materials. Mater Lett 192:56–59. https://doi.org/10.1016/j.matlet.2017.01.070

    CAS  Article  Google Scholar 

  23. 23.

    Hou P, Li R, Li Q, Lu N, Wang K, Liu M, Cheng X, Shah S (2018) Novel superhydrophobic cement-based materials achieved by construction of hierarchical surface structure with FAS/SiO2 hybrid nanocomposites. ES Mater Manuf. https://doi.org/10.30919/esmm5f125

  24. 24.

    Franzoni E, Pigino B, Pistolesi C (2013) Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cem Concr Compos 44:69–76. https://doi.org/10.1016/j.cemconcomp.2013.05.008

    CAS  Article  Google Scholar 

  25. 25.

    Boinovich LB, Emelyanenko AM (2015) The behaviour of fluoro- and hydrocarbon surfactants used for fabrication of superhydrophobic coatings at solid/water interface. Colloids Surf a-Physicochemical Eng Asp 481:167–175. https://doi.org/10.1016/j.colsurfa.2015.05.003

    CAS  Article  Google Scholar 

  26. 26.

    Knudsen SM, Gunnarsen L, Madsen AM (2017) Inflammatory potential of low doses of airborne fungi from fungal infested damp and dry gypsum boards. Build Environ 125:475–483. https://doi.org/10.1016/j.buildenv.2017.09.014

    Article  Google Scholar 

  27. 27.

    Adams RI, Chen W, Kumagai K, Macher JM, Mendell MJ (2019) Relating measured moisture of gypsum board to estimated water activity using moisture meters. Build Environ 147:284–298. https://doi.org/10.1016/j.buildenv.2018.10.030

    Article  Google Scholar 

  28. 28.

    Li K, Zeng X, Li H, Lai X, Xie H (2014) Effects of calcination temperature on the microstructure and wetting behavior of superhydrophobic polydimethylsiloxane/silica coating. Colloids Surf A: Physicochemical Eng Asp 445:111–118. https://doi.org/10.1016/j.colsurfa.2014.01.024

    CAS  Article  Google Scholar 

  29. 29.

    N, S C W G (2010) Hygrothermal performance of building materials and products - Determination of hygroscopic sorption properties.

  30. 30.

    Ru X, Ma B, Huang J, Huang Y, Troczynski T (2012) Phosphogypsum Transition to α-Calcium Sulfate Hemihydrate in the Presence of Omongwaite in NaCl Solutions Under Atmospheric Pressure. J Am Ceram Soc 95:3478–3482. https://doi.org/10.1111/j.1551-2916.2012.05429.x

    CAS  Article  Google Scholar 

  31. 31.

    Xie J, Hu J, Lin X, Fang L, Wu F, Liao X, Luo H, Shi L (2018) Robust and anti-corrosive PDMS/SiO2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles. Appl Surf Sci 457:870–880. https://doi.org/10.1016/j.apsusc.2018.06.250

    CAS  Article  Google Scholar 

  32. 32.

    Liu X, Xu Y, Ben K, Chen Z, Wang Y, Guan Z (2015) Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces. Appl Surf Sci 339:94–101. https://doi.org/10.1016/j.apsusc.2015.02.157

    CAS  Article  Google Scholar 

  33. 33.

    Wu Y, Jia S, Qing Y, Luo S, Liu M (2016) A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. J Mater Chem A 4:14111–14121. https://doi.org/10.1039/c6ta05259b

    CAS  Article  Google Scholar 

  34. 34.

    Zhang L, Chen H, Sun J, Shen J (2007) Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate;facile method to prepare a superhydrophobic surface. Chem Mater 19:948–953

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Key R&D Program of China (grant number 2016YFC0700905-04).

Author information



Corresponding author

Correspondence to Jian Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Huang, J., Ma, B. et al. SiO2/silicone hybrid superhydrophobic coating on gypsum-based materials with self-cleaning and moisture resistance. J Sol-Gel Sci Technol (2020). https://doi.org/10.1007/s10971-020-05347-3

Download citation


  • SiO2/silicone hybrid superhydrophobic surface
  • Gypsum-based material
  • Moisture absorption
  • Moisture desorption
  • Self-cleaning