• Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:

Effect of TiO2 sol on the conversion efficiency of TiO2 based dye-sensitized solar cell

Abstract

Many approaches such as coupling with narrow bandgap semiconductors, doping with metals, using TiO2/graphene/TiO2 sandwich structure and TiCl4 treatment have been taken to improve TiO2 based dye-sensitized solar cell (DSSC). In this work, the effect of mixing TiO2 sol on the performance of TiO2 based DSSC, as compared mixing with pure anatase TiO2 particles was systematically studied. TiO2 sol has smaller particles (1 nm–1 µm) that could fill up the voids between large TiO2 particles in the TiO2 layer. The mixture was deposited on the working electrodes via simple casting method, followed by TiCl4 treatment and annealing in order to form TiO2 layers. The study showed that P III layer, prepared using mixture of TiO2 sol and P25 TiO2 particles, gave the best photoelectric conversion performance of DSSC (3.31%). The TiO2 sol improved the compactness and crystallinity of TiO2 layer (P III layer) in heat treatment, providing the lowest resistance path for more effective charge carrier transportation as verified by the electrochemical impedance spectroscope (EIS) measurement. Thus, all these factors contributed to the performance of DSSC fabricated by P III layer.

Highlights

  • The effect of mixing TiO2 sol on the performance of TiO2 based DSSC, as compared mixing with pure anatase TiO2 particles was studied.

  • The TiO2 sol has smaller particles (1 nm–1 μm) that could fill up the voids between large TiO2 particles in the TiO2 layer.

  • Thus, it improved the compactness and crystallinity of TiO2 layer, providing the lowest resistance path for more effective charge carrier transportation as verified by the EIS measurement.

  • It gave the best photoelectric conversion performance of DSSC (3.31 %).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Sima C, Grigoriu C, Antohe S (2010) Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films 519:595–597

    CAS  Article  Google Scholar 

  2. 2.

    Arbouch I, Karzazi Y, Hammouti B (2014) Organic photovoltaic cells: operating principles, recent developments and current challenges—review. Phys Chem News 72:73–84

    Google Scholar 

  3. 3.

    Joanni E, Savu R, de Sousa Goes M, Bueno PR, De Freitas JN, Nogueira AF, Longo E, Varela JA (2007) Dye-sensitized solar cell architecture based on indium–tin oxide nanowires coated with titanium dioxide. Scr Materialia 57:277–280

    CAS  Article  Google Scholar 

  4. 4.

    Wang X, Zhu H, Xu Y, Wang H, Tao Y, Hark S, Xiao X, Li Q (2010) Aligned ZnO/CdTe core−shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. ACS Nano 4:3302–3308

    CAS  Article  Google Scholar 

  5. 5.

    Ali AK, Erten-Ela S, Hassoon KI, Ela Ç (2019) Plasmonic enhancement as selective scattering of gold nanoparticles based dye sensitized solar cells. Thin Solid Films 671:127–132

    CAS  Article  Google Scholar 

  6. 6.

    Li L-L, Diau EW-G (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304

    CAS  Article  Google Scholar 

  7. 7.

    Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42:1809–1818

    CAS  Article  Google Scholar 

  8. 8.

    Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22:1915–1925

    CAS  Article  Google Scholar 

  9. 9.

    Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy Mater Sol Cells 91:566–571

    CAS  Article  Google Scholar 

  10. 10.

    Chang H, Wu H, Chen T, Huang K, Jwo C, Lo Y (2010) Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. J Alloy Compd 495:606–610

    CAS  Article  Google Scholar 

  11. 11.

    Calogero G, Di Marco G (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92:1341–1346

    CAS  Article  Google Scholar 

  12. 12.

    Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W, Islam A, Bi E, Ye F (2014) Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl Phys Express 7:052301

    Article  Google Scholar 

  13. 13.

    Xi J, Dahoudi NA, Zhang Q, Sun Y, Cao G (2012) Effect of annealing temperature on the performances and electrochemical properties of TiO2 dye-sensitized solar cells. Sci Adv Mater 4:727–733

    CAS  Article  Google Scholar 

  14. 14.

    Bramantyo A, Nji R, Murakami K (2015) Optimization of ZnO seed layer for growth of vertically aligned ZnO nanorods on glass surface. In: JJAP Conference Proceedings. The Japan Society of Applied Physics, Hamamatsu, Japan

  15. 15.

    Takahashi S, Shinohara K, Shiozaki K, Okuya M (2010) ZnO thin film prepared by a microwave heating technique. Trans Mater Res Soc Jpn 35:7–9

    CAS  Article  Google Scholar 

  16. 16.

    Okuya M, Ohashi K, Yamamoto T, Madarász J (2008) Preparation of SnO2 transparent conducting films for dye-sensitized solar cells by SPD technique. Electrochemistry 76:132–135

    CAS  Article  Google Scholar 

  17. 17.

    Wang Y-F, Li K-N, Liang C-L, Hou Y-F, Su C-Y, Kuang D-B (2012) Synthesis of hierarchical SnO 2 octahedra with tailorable size and application in dye-sensitized solar cells with enhanced power conversion efficiency. J Mater Chem 22:21495–21501

    CAS  Article  Google Scholar 

  18. 18.

    Dai G, Zhao L, Wang S, Hu J, Dong B, Lu H, Li J (2012) Double-layer composite film based on sponge-like TiO2 and P25 as photoelectrode for enhanced efficiency in dye-sensitized solar cells. J Alloy Compd 539:264–270

    CAS  Article  Google Scholar 

  19. 19.

    Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y (2015) Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin J Catal 36:2049–2070

    CAS  Article  Google Scholar 

  20. 20.

    Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534

    CAS  Article  Google Scholar 

  21. 21.

    Abdullah H, Razali MZ, Shaari S, Taha MR (2014) Enhancement of dye-sensitized solar cell efficiency using carbon nanotube/TiO2 nanocomposite thin films fabricated at various annealing temperatures. Electron Mater Lett 10:611–619

    CAS  Article  Google Scholar 

  22. 22.

    O’Regan BC, Durrant JR, Sommeling PM, Bakker NJ (2007) Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J Phys Chem C 111:14001–14010

    Article  Google Scholar 

  23. 23.

    Fuke N, Katoh R, Islam A, Kasuya M, Furube A, Fukui A, Chiba Y, Komiya R, Yamanaka R, Han L (2009) Influence of TiCl4 treatment on back contact dye-sensitized solar cells sensitized with black dye. Energy Environ Sci 2:1205–1209

    Article  Google Scholar 

  24. 24.

    Yu B-Y, Tsai A, Tsai S-P, Wong K-T, Yang Y, Chu C-W, Shyue J-J (2008) Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnology 19:255202

    Article  Google Scholar 

  25. 25.

    Oekermann T, Zhang D, Yoshida T, Minoura H (2004) Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J Phys Chem B 108:2227–2235

    CAS  Article  Google Scholar 

  26. 26.

    Iqbal J, Yahia I, Zahran H, AlFaify S, AlBassam A, El-Naggar A (2016) Linear and non-linear optics of nano-scale 2′, 7′ dichloro-fluorescein/FTO optical system: bandgap and dielectric analysis. Opt Mater 62:527–533

    CAS  Article  Google Scholar 

  27. 27.

    Jeng M-J, Wung Y-L, Chang L-B, Chow L (2013) Particle size effects of TiO2 layers on the solar efficiency of dye-sensitized solar cells. Int J Photoenergy 51–58

  28. 28.

    Regonini D, Jaroenworaluck A, Stevens R, Bowen CR (2010) Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interface Anal 42:139–144

    CAS  Article  Google Scholar 

  29. 29.

    Yoo B, Kim K, Lee SH, Kim WM, Park N-G (2008) ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92:873–877

    CAS  Article  Google Scholar 

  30. 30.

    Jinting J, Wang F, Sakamoto M, Takao J, Adachi M (2008) Performance of dye-sensitized solar cells based on nanocrystals TiO2 film prepared with mixed template method. SoEn 82:1042–1048

    Google Scholar 

  31. 31.

    Riaz N, Bustam MA, Chong FK, Man ZB, Khan MS, Shariff AM (2014) Photocatalytic degradation of DIPA using bimetallic Cu-Ni/TiO2 photocatalyst under visible light irradiation. Sci World J, 2014:342020. https://www.hindawi.com/journals/tswj/2014/342020/

  32. 32.

    Tobaldi D, Lajaunie L, Rozman N, Caetano A, Seabra M, Škapin AS, Arenal R, Labrincha J (2019) Impact of the absolute rutile fraction on TiO2 visible-light absorption and visible-light-promoted photocatalytic activity. J Photochem Photobio A Chem 382:111940

    CAS  Article  Google Scholar 

  33. 33.

    Shieh D-L, Lin Y-S, Yeh J-H, Chen S-C, Lin B-C, Lin J-L (2012) N-doped, porous TiO2 with rutile phase and visible light sensitive photocatalytic activity. Chem Commun 48:2528–2530

    CAS  Article  Google Scholar 

  34. 34.

    Nissfolk J (2009) Charge Transport Processes in Mesoporous Photoelectrochemical Systems. 1654–1081

Download references

Acknowledgements

The authors would like to express appreciation for the financial support from AUN/SEED-Net (Grant number: 304.PBAHAN.6050390/J135), as well as support from the Electrical and Electronic Information Engineering department at the Toyohashi University of Technology (TUT) and School of Materials and Mineral Resources Engineering Campus, Universiti Sains Malaysia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Y. Pung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toe, M.Z., Pung, S.Y., Yaacob, K.A. et al. Effect of TiO2 sol on the conversion efficiency of TiO2 based dye-sensitized solar cell. J Sol-Gel Sci Technol 95, 439–446 (2020). https://doi.org/10.1007/s10971-020-05325-9

Download citation

Keywords

  • DSSC
  • TiO2
  • Sol
  • Charge transportation