• Review Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:

Sol–gel engineering to tune structural colours

Abstract

For several decades, the sol–gel process allows the fabrication of functional materials through the strong coupling between materials chemistry and advanced processing. This branch of material’s science is generally associated with the formation of oxide and hybrid materials obtained through a transition between a sol and a gel. Engineering the sol–gel process to extend same principles to other classes of materials is an emerging and promising research line. These aspects will be illustrated in this article by reviewing the successful case of optical materials with tunable structural colours. It will be shown that sol–gel transition from molecular or colloidal building blocks results in optical materials with great diversity in structure and composition such as oxide, hybrid, or metal–organic frameworks. Applicative examples will be provided including photocatalytic, “invisible” and anti-reflective coatings, graded photonic mirrors and 2D photonic sensors.

Highlights

  • After 30 years from D. Ulrich’s pionnering works, most of the key advantages of the sol-gel process are still valid today suppression or appearance of structural colours was obtained by controlling the interplay between intrinsic optical properties of the materials and their structure.

  • Anti-reflective, invisible and photocatalytic coatings, graded Bragg mirros and diffraction gratings can be fabricated through engineering the sol-gel process to conventional and emerging materials.

  • Taking advantage of the versatility of the sol-gel process by extending the composition threshold beyond oxides is an exciting future research line for the field.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Ulrich DR (1988) Better Ceramics through Chemistry. In: Laine RM (ed) Transformation of organometallics into common and exotic materials: design and activation. Springer, Netherlands, Dordrecht, pp 207–235. https://doi.org/10.1007/978-94-009-1393-6_19

  2. 2.

    Better Ceramics Through Chemistry II, Brinker CJ, Clark DE, Ulrich DR (eds.), Materials Research Society Symposium Proceedings, Materials Research Society, New York, 73, 1986

  3. 3.

    Faustini M, Nicole L, Ruiz-Hitzky E, Sanchez C (2018) History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv Funct Mater 28:1704158. https://doi.org/10.1002/adfm.201704158

    CAS  Article  Google Scholar 

  4. 4.

    Ulrich DR (1988) Prospects of sol–gel processes. J Non-Cryst Solids 100:174–193. https://doi.org/10.1016/0022-3093(88)90015-4

    CAS  Article  Google Scholar 

  5. 5.

    Faustini M, Grosso D, Boissiere C, Backov R, Sanchez C (2014) “Integrative sol–gel chemistry”: a nanofoundry for materials science. J Sol–Gel Sci Technol 70:216–226. https://doi.org/10.1007/s10971-014-3321-9

    CAS  Article  Google Scholar 

  6. 6.

    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992

    CAS  Article  Google Scholar 

  7. 7.

    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. https://doi.org/10.1021/ja00053a020

    CAS  Article  Google Scholar 

  8. 8.

    Ceratti DR, Faustini M, Sinturel C, Vayer M, Dahirel V, Jardat M, Grosso D (2015) Critical effect of pore characteristics on capillary infiltration in mesoporous films. Nanoscale 7:5371–5382

    CAS  Article  Google Scholar 

  9. 9.

    Faustini M, Boissiere C, Nicole L, Grosso D (2014) From chemical solutions to inorganic nanostructured materials: a journey into evaporation-driven processes. Chem Mater 26:709–723. https://doi.org/10.1021/cm402132y

    CAS  Article  Google Scholar 

  10. 10.

    Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1991) Fundamental of sol–gel dip-coating. Thin Solid Films 201:97–108. https://doi.org/10.1016/0040-6090(91)90158-t

    CAS  Article  Google Scholar 

  11. 11.

    Faustini M, Drisko GL, Boissiere C, Grosso D (2014) Liquid deposition approaches to self-assembled periodic nanomasks. Scr Materialia 74:13–18. https://doi.org/10.1016/j.scriptamat.2013.07.029

    CAS  Article  Google Scholar 

  12. 12.

    Alemán JV, Chadwick AV, He J, Hess M, Horie K, Jones RG, Kratochvíl P, Meisel I, Mita I, Moad G, Penczek S, Stepto RFT (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem, 79. https://doi.org/10.1351/pac200779101801

  13. 13.

    Innocenzi P. The sol to gel transition. Springer International Publishing AG Switzerland: Springer; 2016

  14. 14.

    Fellinger T-P (2017) Sol–gel carbons from ionothermal syntheses. J Sol–Gel Sci Technol 81:52–58. https://doi.org/10.1007/s10971-016-4115-z

    CAS  Article  Google Scholar 

  15. 15.

    Tian T, Zeng Z, Vulpe D, Casco ME, Divitini G, Midgley PA, Silvestre-Albero J, Tan J-C, Moghadam PZ, Fairen-Jimenez D (2018) A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat Mater 17:174–179. https://doi.org/10.1038/nmat5050

    CAS  Article  Google Scholar 

  16. 16.

    Almeida RM, Portal S (2003) Photonic band gap structures by sol–gel processing. Curr Opin Solid State Mater Sci 7:151–157

    CAS  Article  Google Scholar 

  17. 17.

    Dislich H, Hinz P (1982) Proceedings of the International Workshop on Glasses and Glass Ceramics from Gels History and principles of the sol–gel process, and some new multicomponent oxide coatings. J Non-Cryst Solids 48:11–16. https://doi.org/10.1016/0022-3093(82)90242-3

    CAS  Article  Google Scholar 

  18. 18.

    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341. https://doi.org/10.1016/0079-6786(88)90005-2

    CAS  Article  Google Scholar 

  19. 19.

    Geffcken W, Berger E (1939) Ger Pat 736(May):411

  20. 20.

    Naudin G, Ceratti DR, Faustini M (2017) Sol-Gel Derived Functional Coatings for Optics. In: Pillai S., Hehir S. (eds) Sol-Gel Materials for Energy, Environment and Electronic Applications. Advances in Sol-Gel Derived Materials and Technologies. Springer, Cham

  21. 21.

    Louis B, Krins N, Faustini M, Grosso D (2011) Understanding crystallization of anatase into binary SiO2/TiO2 Sol–Gel optical thin films: an in situ thermal ellipsometry analysis. J Phys Chem C 115:3115–3122. https://doi.org/10.1021/jp109653p

    CAS  Article  Google Scholar 

  22. 22.

    Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6:2305–2312. https://doi.org/10.1021/nl061776m

    CAS  Article  Google Scholar 

  23. 23.

    Brigo L, Faustini M, Pistore A, Kang HK, Ferraris C, Schutzmann S, Brusatin G (2016) Porous inorganic thin films from bridged silsesquioxane sol–gel precursors. J Non-Cryst Solids 432:399–405

    CAS  Article  Google Scholar 

  24. 24.

    Sanchez C, Boissiere C, Cassaignon S, Chaneac C, Durupthy O, Faustini M, Grosso D, Laberty-Robert C, Nicole L, Portehault D, Ribot F, Rozes L, Sassoye C (2014) Molecular engineering of functional inorganic and hybrid materials. Chem Mater 26:221–238. https://doi.org/10.1021/cm402528b

    CAS  Article  Google Scholar 

  25. 25.

    Soler-Illia G, Azzaroni O (2011) Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40:1107–1150. https://doi.org/10.1039/c0cs00208a

    CAS  Article  Google Scholar 

  26. 26.

    Faustini M, Vayer M, Marmiroli B, Hillmyer M, Amenitsch H, Sinturel C, Grosso D (2010) Bottom-up approach toward titanosilicate mesoporous pillared planar nanochannels for nanofluidic applications. Chem Mater 22:5687–5694. https://doi.org/10.1021/cm101502n

    CAS  Article  Google Scholar 

  27. 27.

    Faustini M, Giraud M, Jones D, Rozière J, Dupont M, Porter TR, Nowak S, Bahri M, Ersen O, Sanchez C (2019) Hierarchically structured ultraporous iridium‐based materials: a novel catalyst architecture for proton exchange membrane water electrolyzers. Adv Energy Mater 9:1802136

    Article  Google Scholar 

  28. 28.

    Brinker CJ, Lu YF, Sellinger A, Fan HY (1999) Evaporation-induced self-assembly: nanostructures made easy Adv Mater 11:579–585. https://doi.org/10.1002/(sici)1521-4095(199905)11:73.0.co;2-r

    CAS  Article  Google Scholar 

  29. 29.

    Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals molding the flow of light Second edition Introduction. In Photonic crystals: molding the flow of light, 2nd edn, pp 1–5

  30. 30.

    Yakovlev AV, Milichko VA, Vinogradov VV, Vinogradov AV (2016) Inkjet color printing by interference nanostructures. ACS Nano 10:3078–3086

    CAS  Article  Google Scholar 

  31. 31.

    Gazoni RM, Bellino MG, Fuertes MC, Giménez G, Soler-Illia GJAA, Ricci MLM (2017) Designed nanoparticle–mesoporous multilayer nanocomposites as tunable plasmonic–photonic architectures for electromagnetic field enhancement. J Mater Chem C 5:3445–3455

    CAS  Article  Google Scholar 

  32. 32.

    Checcucci S, Bottein T, Gurioli M, Favre L, Grosso D, Abbarchi M (2019) Multifunctional metasurfaces based on direct nanoimprint of titania sol–gel coatings. Adv Opt Mater 7:1801406

    Article  Google Scholar 

  33. 33.

    England GT, Russell C, Shirman E, Kay T, Vogel N, Aizenberg J (2017) The optical Janus effect: asymmetric structural color reflection materials. Adv Mater 29:1606876

    Article  Google Scholar 

  34. 34.

    Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428. https://doi.org/10.1016/j.apcatb.2015.03.058

    CAS  Article  Google Scholar 

  35. 35.

    Li R, Faustini M, Boissiere C, Grosso D (2014) Water capillary condensation effect on the photocatalytic activity of porous TiO2 in air. J Phys Chem C 118:17710–17716. https://doi.org/10.1021/jp5046468

    CAS  Article  Google Scholar 

  36. 36.

    Paz Y, Luo Z, Rabenberg L, Heller A (1995) Photooxidative self-cleaning transparent titanium-dioxide films on glass. J Mater Res 10:2842–2848. https://doi.org/10.1557/jmr.1995.2842

    CAS  Article  Google Scholar 

  37. 37.

    Maggos T, Bartzis JG, Liakou M, Gobin C (2007) Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study. J Hazard Mater 146:668–673. https://doi.org/10.1016/j.jhazmat.2007.04.079

    CAS  Article  Google Scholar 

  38. 38.

    Ao CH, Lee SC, Yu JZ, Xu JH (2004) Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Appl Catal B Environ 54:41–50. https://doi.org/10.1016/j.apcatb.2004.06.004

    CAS  Article  Google Scholar 

  39. 39.

    Ao CH, Lee SC, Mak CL, Chan LY (2003) Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO. Appl Catal B Environ 42:119–129. https://doi.org/10.1016/s0926-3373(02)00219-9

    CAS  Article  Google Scholar 

  40. 40.

    Li W, Wu Z, Wang J, Elzatahry AA, Zhao D (2014) A Perspective on mesoporous TiO2 materials. Chem Mater 26:287–298. https://doi.org/10.1021/cm4014859

    CAS  Article  Google Scholar 

  41. 41.

    Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1999) Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater 11:2813–2826. https://doi.org/10.1021/cm990185c

    CAS  Article  Google Scholar 

  42. 42.

    Soler-Illia GJAA, Angelome PC, Fuertes MC, Grosso D, Boissiere C (2012) Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 4:2549–2566. https://doi.org/10.1039/C2NR11817C

    CAS  Article  Google Scholar 

  43. 43.

    Du J, Lai XY, Yang NL, Zhai J, Kisailus D, Su FB, Wang D, Jiang L (2011) Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5:590–596. https://doi.org/10.1021/nn102767d

    CAS  Article  Google Scholar 

  44. 44.

    Ceratti DR, Louis B, Paquez X, Faustini M, Grosso D (2015) A new dip coating method to obtain large-surface coatings with a minimum of solution Adv Mater 27:4958–4962. https://doi.org/10.1002/adma.201502518

    CAS  Article  Google Scholar 

  45. 45.

    Fattakhova-Rohlfing D, Zaleska A, Bein T (2014) Three-dimensional titanium dioxide nanomaterials. Chem Rev 114:9487–9558. https://doi.org/10.1021/cr500201c

    CAS  Article  Google Scholar 

  46. 46.

    Stathatos E, Lianos P, Falaras P, Siokou A (2000) Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir 16:2398–2400. https://doi.org/10.1021/la981783t

    CAS  Article  Google Scholar 

  47. 47.

    Young T (1802) The Bakerian lecture: on the theory of light and colours. Philos Trans R Soc Lond 92:12–48

    Google Scholar 

  48. 48.

    Kubota H (1950) On the interference color of thin layers on glass surface. J Phys Soc Jpn 5:10–14. https://doi.org/10.1143/JPSJ.5.10

    Article  Google Scholar 

  49. 49.

    Dong W, Sun Y, Lee CW, Hua W, Lu X, Shi Y, Zhang S, Chen J, Zhao D (2007) Controllable and repeatable synthesis of thermally stable anatase nanocrystal−silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc 129:13894–13904. https://doi.org/10.1021/ja073804o

    CAS  Article  Google Scholar 

  50. 50.

    Allain E, Besson S, Durand C, Moreau M, Gacoin T, Boilot JP (2007) Transparent mesoporous nanocomposite films for self‐cleaning applications. Adv Funct Mater 17:549–554

    CAS  Article  Google Scholar 

  51. 51.

    Guldin S, Kohn P, Stefik M, Song J, Divitini G, Ecarla F, Ducati C, Wiesner U, Steiner U (2013) Self-cleaning antireflective optical coatings. Nano Lett 13:5329–5335. https://doi.org/10.1021/nl402832u

    CAS  Article  Google Scholar 

  52. 52.

    Li R, Boudot M, Boissière C, Grosso D, Faustini M (2017) Suppressing structural colors of photocatalytic optical coatings on glass: the critical role of SiO2. ACS Appl Mater Interfaces 9:14093–14102. https://doi.org/10.1021/acsami.7b02233

    CAS  Article  Google Scholar 

  53. 53.

    Grosso D, Soler-Illia GJdAA, Crepaldi EL, Cagnol F, Sinturel C, Bourgeois A, Brunet-Bruneau A, Amenitsch H, Albouy PA, Sanchez C (2003) Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700 °C. Chem Mater 15:4562–4570. https://doi.org/10.1021/cm031060h

    CAS  Article  Google Scholar 

  54. 54.

    Faustini M, Grenier A, Naudin G, Li R, Grosso D (2015) Ultraporous nanocrystalline TiO2-based films: synthesis, patterning and application as anti-reflective, self-cleaning, superhydrophilic coatings. Nanoscale 7:19419–19425. https://doi.org/10.1039/C5NR06466J

    CAS  Article  Google Scholar 

  55. 55.

    Faustini M, Nicole L, Boissiere C, Innocenzi P, Sanchez C, Grosso D (2010) Hydrophobic, antireflective, self-cleaning, and antifogging sol–gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chem Mater 22:4406–4413. https://doi.org/10.1021/cm100937e

    CAS  Article  Google Scholar 

  56. 56.

    C.J. Brinker AJH, Schunk PR, Frye GC, Ashley CS (1992) Review of sol–gel thin film formation. J Non-Cryst Solids 147:13

    Google Scholar 

  57. 57.

    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829

    CAS  Article  Google Scholar 

  58. 58.

    Bindini E, Naudin G, Faustini M, Grosso D, Boissière C (2017) Critical role of the atmosphere in dip-coating process. J Phys Chem C 121:14572–14580. https://doi.org/10.1021/acs.jpcc.7b02530

    CAS  Article  Google Scholar 

  59. 59.

    Faustini M, Grosso D (2016) Self-assembled inorganic nanopatterns (INPs) made by sol–gel dip-coating: Applications in nanotechnology and nanofabrication. Comptes Rendus Chim 19:248–265. https://doi.org/10.1016/j.crci.2015.05.011

    CAS  Article  Google Scholar 

  60. 60.

    Faustini M, Capobianchi A, Varvaro G, Grosso D (2012) Highly controlled dip-coating deposition of fct FePt nanoparticles from layered salt precursor into nanostructured thin films: an easy way to tune magnetic and optical properties. Chem Mater 24:1072–1079. https://doi.org/10.1021/cm2033492

    CAS  Article  Google Scholar 

  61. 61.

    Ceratti DR, Louis B, Paquez X, Faustini M, Grosso D (2015) A new dip coating method to obtain large-surface coatings with a minimum of solution. Adv Mater 27:4958–4962. https://doi.org/10.1002/adma.201502518

    CAS  Article  Google Scholar 

  62. 62.

    Faustini M, Ceratti DR, Louis B, Boudot M, Albouy P-A, Boissiere C, Grosso D (2014) Engineering functionality gradients by dip coating process in acceleration mode. Acs Appl Mater Interfaces 6:17102–17110. https://doi.org/10.1021/am504770x

    CAS  Article  Google Scholar 

  63. 63.

    Shekhah O, Liu J, Fischer RA, Woll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106. https://doi.org/10.1039/c0cs00147c

    CAS  Article  Google Scholar 

  64. 64.

    Demessence A, Boissiere C, Grosso D, Horcajada P, Serre C, Ferey G, Soler-Illia G, Sanchez C (2010) Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness. J Mater Chem 20:7676–7681. https://doi.org/10.1039/c0jm00500b

    CAS  Article  Google Scholar 

  65. 65.

    Demessence A, Horcajada P, Serre C, Boissiere C, Grosso D, Sanchez C, Ferey G (2009) Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chem Commun (46):7149–7151. https://doi.org/10.1039/b915011k

  66. 66.

    Lu G, Hupp JT (2010) Metal–organic frameworks as sensors: a ZIF-8 based Fabry–Pérot device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833. https://doi.org/10.1021/ja101415b

    CAS  Article  Google Scholar 

  67. 67.

    Hinterholzinger FM, Ranft A, Feckl JM, Ruhle B, Bein T, Lotsch BV (2012) One-dimensional metal-organic framework photonic crystals used as platforms for vapor sorption. J Mater Chem 22:10356–10362. https://doi.org/10.1039/C2JM15685G

    CAS  Article  Google Scholar 

  68. 68.

    Hu Z, Tao C-a, Wang F, Zou X, Wang J (2015) Flexible metal-organic framework-based one-dimensional photonic crystals. J Mater Chem C 3:211–216. https://doi.org/10.1039/C4TC01501K

    CAS  Article  Google Scholar 

  69. 69.

    Ranft A, Niekiel F, Pavlichenko I, Stock N, Lotsch BV (2015) Tandem MOF-based photonic crystals for enhanced analyte-specific optical detection. Chem Mater 27:1961–1970. https://doi.org/10.1021/cm503640c

    CAS  Article  Google Scholar 

  70. 70.

    Lu G, Farha OK, Kreno LE, Schoenecker PM, Walton KS, Van Duyne RP, Hupp JT(2011) Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing Adv Mater 23:4449–4452. https://doi.org/10.1002/adma.201102116

    CAS  Article  Google Scholar 

  71. 71.

    Faustini M, Cattoni A, Peron J, Boissière C, Ebrard P, Malchère A, Steyer P, Grosso D (2018) Dynamic shaping of femtoliter dew droplets. ACS Nano 12:3243–3252. https://doi.org/10.1021/acsnano.7b07699

    CAS  Article  Google Scholar 

  72. 72.

    Bottein T, Dalstein O, Putero M, Cattoni A, Faustini M, Abbarchi M, Grosso D (2018) Environment-controlled sol–gel soft-NIL processing for optimized titania, alumina, silica and yttria-zirconia imprinting at sub-micron dimensions. Nanoscale 10:1420–1431. https://doi.org/10.1039/C7NR07491C

    CAS  Article  Google Scholar 

  73. 73.

    Echeverría JC, Faustini M, Garrido JJ (2016) Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs. Sens Actuators B Chem 222:1166–1174. https://doi.org/10.1016/j.snb.2015.08.010

    CAS  Article  Google Scholar 

  74. 74.

    Boudot M, Ceratti DR, Faustini M, Boissiere C, Grosso D (2014) Alcohol-assisted water condensation and stabilization into hydrophobic mesoporosity. J Phys Chem C 118:23907–23917. https://doi.org/10.1021/jp508372d

    CAS  Article  Google Scholar 

  75. 75.

    Boudot M, Cattoni A, Grosso D, Faustini M (2016) Ethanol–water co-condensation into hydrophobic mesoporous thin films: example of a photonic ethanol vapor sensor in humid environment. J Sol–Gel Sci Technol 1–10. https://doi.org/10.1007/s10971-016-4084-2

  76. 76.

    Dalstein O, Gkaniatsou E, Sicard C, Sel O, Perrot H, Serre C, Boissière C, Faustini M (2017) Evaporation-directed crack-patterning of metal–organic framework colloidal films and their application as photonic sensors. Angew Chem Int Ed 56:14011–14015. https://doi.org/10.1002/anie.201706745

    CAS  Article  Google Scholar 

  77. 77.

    Schueller OJA, Duffy DC, Rogers JA, Brittain ST, Whitesides GM (1999) Reconfigurable diffraction gratings based on elastomeric microfluidic devices. Sens Actuators A Phys 78:149–159

    CAS  Article  Google Scholar 

  78. 78.

    Grzybowski BA, Qin D, Whitesides GM (1999) Beam redirection and frequency filtering with transparent elastomeric diffractive elements. Appl Opt 38:2997–3002

    CAS  Article  Google Scholar 

  79. 79.

    Chen H-L, Cattoni A, De Lépinau R, Walker AW, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J (2019) A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nat Energy 4:761–767

    CAS  Article  Google Scholar 

  80. 80.

    Odziomek M, Bahri M, Boissiere C, Sanchez C, Lassalle-Kaiser B, Zitolo A, Ersen O, Nowak S, Tard C, Giraud M, Faustini M, Peron J (2020) Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates. Mater Horiz. https://doi.org/10.1039/C9MH01408J

Download references

Acknowledgements

Sorbonne Université, CNRS and Collège de France are acknowledged. MF gratefully acknowledges all the co-authors of the works described in this article. MF acknowledges the funding from the European Research Council under European Union’s Horizon 2020 Programme (Grant Agreement no. 803220, TEMPORE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Faustini.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faustini, M. Sol–gel engineering to tune structural colours. J Sol-Gel Sci Technol (2020). https://doi.org/10.1007/s10971-020-05319-7

Download citation

Keywords

  • Sol–gel
  • MOFs
  • Anti-reflection
  • Crack self-assembly
  • Diffraction gratings