Skip to main content
Log in

Comparison and evaluation of in vitro degradation behaviors of organosilicone-modified gelatin hybrids

  • Original Paper: Characterization methods of sol–gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Degradation behavior is one of the most important characteristics of biomedical materials for their applications. Herein, we systematically investigate the in vitro degradation behaviors of γ-glycidoxypropyltrimethoxysilane (GT) and/or epoxy-terminated polydimethylsiloxane oligomer (ES)-modified gelatin hybrid materials in physiological conditions. Their microscopic appearance, chemical composition, thermal performance, and mechanical properties at different degradation periods were thoroughly characterized by a series of measurements. It was found that the degradation behavior of silica–gelatin hybrids could be modulated by controlling the proportion of GT to ES oligomers. In particular, ES/GT-G hybrid as a result of combination of ES and GT, exhibited a faster degradation rate than that of GT-G hybrid when using merely GT, and showed a more homogeneous degradation behavior during the degradation process. Additionally, these silica–gelatin hybrids showed low cytotoxicity to human renal epithelial cells, and the cell viability was all above 83%. This work is helpful for a further insight into the in vivo degradation of silica–gelatin hybrid scaffolds, which are promising in biomedical applications.

Highlights

  • In vitro degradation behaviors of silica–gelatin hybrids were tested in physiological conditions.

  • Degradation behaviors of silica–gelatin hybrids could be modulated by the proportion of GT to ES oligomers.

  • ES/GT-G hybrid showed a faster and more homogeneous degradation performance.

  • The prepared silica–gelatin hybrids exhibited cytocompatibility in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Artzi N, Oliva N, Puron C, Shitreet S, Artzi S, Ramos AB, Groothuis A, Sahagian G, Edelman ER (2011) Nat Mater 10(9):704–709

    Article  CAS  Google Scholar 

  2. Parenteaubareil R, Gauvin R, Berthod F (2010) Materials 3(3):1863–1887

    Article  CAS  Google Scholar 

  3. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Acta Biomater 8(9):3191–3200

    Article  CAS  Google Scholar 

  4. Depan D, Shah JS, Misra RDK (2013) Polym Degrad Stab 98(11):2331–2339

    Article  CAS  Google Scholar 

  5. Zhuang H, Zheng JP, Gao H, Yao KD (2007) J Mater Sci Mater Med 18(5):951–957

    Article  CAS  Google Scholar 

  6. Zulkifli FH, Hussain FSJ, Yusoff MM (2014) Polym Degrad Stab 110(110):473–481

    Article  CAS  Google Scholar 

  7. Su K, Wang C (2015) Biotechnol Lett 37(11):2139–2145

    Article  CAS  Google Scholar 

  8. Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Food Hydrocolloid 25(8):1813–1827

    Article  CAS  Google Scholar 

  9. Goncalves S, Chiossone-Kerdel JA, Bianco AS, Ercolino JM, Hernandez-Rojas J (2015) Acta Otolaryngol 135(1):14–25

    Article  CAS  Google Scholar 

  10. Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He AJ, Zhang WJ, Zhou GD (2014) Biomaterials 35(1):152–164

    Article  CAS  Google Scholar 

  11. Lei B, Shin KH, Koh YH, Kim HE (2014) J Biomed Mater Res B 102(7):1528–1536

    Article  CAS  Google Scholar 

  12. Rutnakornpituk M, Ngamdee P, Phinyocheep P (2006) Carbohydr Polym 63(2):229–237

    Article  CAS  Google Scholar 

  13. Xue Y, Wang L, Shao Y, Jin Y, Chen X, Lei B (2014) Chem Eng J 251(251):158–164

    Article  CAS  Google Scholar 

  14. Kaali P, Momcilovic D, Markström A, Aune R, Czel G, Karlsson S (2010) J Appl Polym Sci 115(2):802–810

    Article  CAS  Google Scholar 

  15. Rhee SH, Choi JY, Kim HM (2002) Biomaterials 23(24):4915–4921

    Article  CAS  Google Scholar 

  16. Tonda-Turo C, Gentile P, Saracino S, Chiono V, Nandagiri VK, Muzio G, Canuto RA, Ciardelli G (2011) Int J Biol Macromol 49(4):700–706

    Article  CAS  Google Scholar 

  17. Han X, Du W, Li Y, Li Z, Li L (2016) J Appl Polym Sci 133(8) https://doi.org/10.1002/APP.43059

  18. Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Choi WY, Kim HE (2012) J Mater Chem 22(28):14133–14140

    Article  CAS  Google Scholar 

  19. Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR (2010) Adv Funct Mater 20(22):3835–3845

    Article  CAS  Google Scholar 

  20. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) Biomaterials 26(36):7616–7627

    Article  CAS  Google Scholar 

  21. Australia S (2009) Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity. International Organization for Standardization: Geneva, Switzerland

  22. Mosmann TJ (1983) Immunol Methods 65(1-2):55–63

    Article  CAS  Google Scholar 

  23. Sisson K, Zhang C, Farachcarson MC, Chase DB, Rabolt JF (2009) Biomacromolecules 10(7):1675–1680

    Article  CAS  Google Scholar 

  24. Du WN, Han XN, Li ZJ, Li YP, Li, LX, Wang, KY (2015) J Appl Polym Sci 132(44) https://doi.org/10.1002/APP.42727.

  25. Wojciechowska P, Pietras P, Maciejewski H (2015) Adv Polym Tech 33:36–38

    Google Scholar 

  26. Du WN, Dai GC, Wang BC, Li ZJ, Li LX (2018) J Appl Polym Sci 135(20) https://doi.org/10.1002/app.46264.

  27. Ning CQ, Mehta J, Elghannam A (2005) J Mater Sci 16(4):355–360

    CAS  Google Scholar 

  28. Komsa-Penkova R, Koynova R, Kostov G, Tenchov BG (1996) Biochim Biophys Acta 1297(2):171–181

    Article  Google Scholar 

  29. Neshati Z, Bahrami AR, Eshtiaghhosseini H, Matin MM, Housaindokht MR, Tabari T, Edalatmanesh MA (2012) Cytotechnology 64(5):485–495

    Article  CAS  Google Scholar 

  30. Galia CR, Macedo CA, Rosito R, Mello TMD, Moreira LF (2008) Clinics 63(6):801–806

    Article  Google Scholar 

  31. Bayraktar O, Malay O, Ozgarip Y, Batigã NA (2005) Eur J Pharm Biopharm 60(3):373–381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21376153) and Suzhou International Science and Technology Cooperative Project (SH201108). The authors would thank Wang Zhonghui (College of Light Industry, Textile, and Food Engineering, Sichuan University) for her great help in SEM observation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengjun Li or Lixin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Han, X., Du, W. et al. Comparison and evaluation of in vitro degradation behaviors of organosilicone-modified gelatin hybrids. J Sol-Gel Sci Technol 89, 370–379 (2019). https://doi.org/10.1007/s10971-018-4883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4883-8

Keywords

Navigation