Skip to main content
Log in

Sol-gel nanocomposites for optical applications

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper the results obtained in the last ten years by the authors in the field of sol-gel nanocomposites for optical applications are reviewed. Two type of applications are, in particular, discussed: (a) nanocomposite materials containing semiconductor quantum dots for photonic and optoelectronic applications; (b) nanocomposite materials for optical gas sensing. Nanocomposite multifunctional materials, based on the incorporation of QDs in inorganic or hybrid organic-inorganic matrices, characterized by stable optical properties, good chemical stability, and easy processability, can be obtained using the sol-gel method in combination with colloidal methods. Optical gas sensors based on surface plasmon resonance (SPR) demonstrate great potential both for better understating the chemical interactions at the nanoscale and the development of real devices. A careful control of the film structure allows to achieve very selective gas sensors with tailored microstructure. In both type of applications, the general aspects related to the synthesis and characterization of the materials, and the results obtained in the specific cases, are described with the aim to give an overview of the development of these materials.

Highlights

  • Sol-gel nanocomposites are suitable for incorporating different nanoparticles

  • The incorporation of semiconductor quantum dots allows to tune the optical properties of the nanocomposites

  • Optical sensors can be obtained through the incorporation of sensitive nanoparticles in the porous sol-gel matrix

  • Photonic and optoelectronic applications, as well as optical sensing devices have been explored

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nogami M, Kato A (1994) Formation of CdSxSe1-x microcrystals in sol-gel derived glasses. J Sol-Gel Sci Technol 2:751–754

    Article  CAS  Google Scholar 

  2. Tohge N, Asuka M, Minami T (1992) Sol-gel preparation and optical properties of silica glasses containing Cd and Zn chalcogenide microcrystals. J Non-Cryst Solids 147&148:652–656

    Article  Google Scholar 

  3. Guglielmi M, Martucci A, Righini GC, Pelli S (1994) CdS- and PbS-doped silica-titania optical waveguides. SPIE Sol-Gel Optics III 2288:174–182

    CAS  Google Scholar 

  4. Buso D, Della Giustina G, Brusatin G, Guglielmi M, Martucci A, Chiasera A, Ferrari M, Romanato R (2009) Patterning of Sol-Gel Hybrid Organic-Inorganic Film Doped with Luminescent Semiconductor Quantum Dots. J Nanosci Nanotechnol 9:1858–1864

    Article  CAS  Google Scholar 

  5. Antonello A, Brusatin G, Guglielmi M, Martucci A, Bello V, Mattei G, Mazzoldi P, Pellegrini G (2010) Hybrid organic–inorganic ZnS-loaded nanocomposite films for stable optical coatings. Thin Solid Films 518:6781–6786

    Article  CAS  Google Scholar 

  6. Kho R, Torres-Martinez C, Mehra R (2000) A Simple Colloidal Synthesis for Gram-Quantity Production of Water-Soluble ZnS Nanocrystal Powders. J Colloid Interf Sci 227:561–567

    Article  CAS  Google Scholar 

  7. Gomez DE, van Embden J, Jasieniak J, Smith TA, Mulvaney P (2006) Blinking and surface chemistry of single CdSe nanocrystals. Small 2:204–208

    Article  CAS  Google Scholar 

  8. Manna L, Scher Erik C, Li L-S, Alivisatos AP (2002) Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods. J Am Chem Soc 124:7136–7145

    Article  CAS  Google Scholar 

  9. Blackburn JL, Selmarten DC, Nozik AJ (2003) Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition. J Phys Chem B 107:14154–14157

    Article  CAS  Google Scholar 

  10. van Embden J, Mulvaney P (2005) Nucleation and Growth of CdSe Nanocrystals in a Binary Ligand System. Langmuir 21:10226–10233

    Article  Google Scholar 

  11. Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567–12575

    Article  CAS  Google Scholar 

  12. van Embden J, Jasieniak J, Gomez DE, Mulvaney P, Giersig M (2007) Review of the Synthetic Chemistry Involved in the Production of Core/Shell Semiconductor Nanocrystals. Aust J Chem 60:457–471

    Article  Google Scholar 

  13. Jasieniak J, Mulvaney P (2007) From Cd-Rich to Se-Rich − the Manipulation of CdSe Nanocrystal Surface Stoichiometry. J Am Chem Soc 129:2841–2848

    Article  CAS  Google Scholar 

  14. Antonello A, Guglielmi M, Bello V, Mattei G, Martucci A (2011) Synthesis and tailoring of CdSe core@shell heterostructures for optical applications. Proc SPIE 7941:794107

    Article  Google Scholar 

  15. Jasieniak JJ, Pacifico J, Signorini R, Chiasera A, Ferrari M, Martucci A, Mulvaney P (2007) Luminescence and amplified stimulated emission in CdSe-ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides. Adv Fun Mat 17:1654–1662

    Article  CAS  Google Scholar 

  16. Fortunati I, Gardin S, Todescato F, Signorini R, Bozio R, Jasieniak JJ, Martucci A, Della Giustina G, Pistore A, Brusatin G, Guglielmi M, Prasciolu M, Romanato F (2010) Laser devices based on one- and two-photon pumped semiconductor core-shell quantum dots. In: Francois Kajzar Nonlinear Optics, Quantum Optics 41:73–86

    CAS  Google Scholar 

  17. Fortunati I, Signorini R, Bozio R, Jasieniak JJ, Antonello A, Martucci A, Della Giustina G, Brusatin G, Guglielmi M (2011) CdSe core-shell nanoparticles as active materials for up-converted emission. J Phys Chem C 115:3840–3846

    Article  CAS  Google Scholar 

  18. Antonello A, Brusatin G, Guglielmi M, Bello V, Perotto G, Mattei G, Maiwald M, Zollmer V, Chiasera A, Ferrari M, Martucci A (2011) Novel multifunctional nanocomposites from titanate nanosheets and semiconductor quantum dots. Optical Materials. 33:1839–1846

    Article  CAS  Google Scholar 

  19. Todescato F, Fortunati I, Gardin S, Signorini R, Bozio R, Jasieniak JJ, Martucci A, Della Giustina G, Brusatin G, Guglielmi M (2010) One- and two-photon pumped soft lithographed DFB laser systems based on semiconductor core-shell quantum dots. Proc SPIE 7582:75821C–1- 5821C-9

    Article  Google Scholar 

  20. Signorini R, Fortunati I, Todescato F, Gardin S, Bozio R, Jasieniak JJ, Martucci A, Della Giustina G, Brusatin G, Guglielmi M (2011) Facile production of up-converted quantum dot lasers. Nanoscale. 3:4109–4113

    Article  CAS  Google Scholar 

  21. Jasieniak J, Sada C, Chiasera A, Ferrari M, Martucci A, Mulvaney P (2008) Sol-gel based vertical optical microcavities with quantum dot defect layers. Adv Fun Mat 18:3772–3779

    Article  CAS  Google Scholar 

  22. Antonello A, Guglielmi M, Bello V, Mattei G, Chiasera A, Ferrari M, Martucci A (2010) Titanate nanosheets as high refractive layer in vertical microcavity incorporating semiconductor quantum dots. J Phys Chem C 114:18423–18428

    Article  CAS  Google Scholar 

  23. Jasieniack J, Fortunati I, Gardin S, Signorini R, Bozio R, Martucci A, Mulvaney P (2008) Highly efficient amplified stimulated emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping. Adv Mat 20:69–73

    Article  Google Scholar 

  24. Rudnitsky A, Shahmoon A, Nathan M, Nazarathy M, Larom B, Jasieniak J, Martucci A, Businaro L, Gerardino A, Zalevsky Z (2011) All-optical integrated micro logic gate. Microelectronics J 42:472–476

    Article  CAS  Google Scholar 

  25. Donagh CC, Burke CS, Craith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  Google Scholar 

  26. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  27. Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565

    Article  CAS  Google Scholar 

  28. Bingham JM, Anker JN, Kreno LE, Van-Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132:17358–17359

    Article  CAS  Google Scholar 

  29. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Ann Rev Phys Chem 49:569–638

    Article  CAS  Google Scholar 

  30. Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Ann Rev Phys Chem 51:41–63

    Article  CAS  Google Scholar 

  31. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216:398–410

    Article  CAS  Google Scholar 

  32. Raether H, Kretschmann E (1968) Radiative decay of non-radiative surface plasmons excited by light. Z fur Naturfor 23:2135–2136

    Google Scholar 

  33. Brigo L, Gazzola E, Cittadini M, Zilio P, Zacco G, Romanato F, Martucci A, Guglielmi M, Brusatin G (2013) Short and long range surface plasmon polariton waveguides for xylene sensing. Nanotechnology 24:155502

    Article  CAS  Google Scholar 

  34. Buso D, Pacifico J, Martucci A, Mulvaney P (2007) Gold-nanoparticle-doped TiO2 semiconductor thin films: Optical characterization. Adv Fun Mat 17:347–354

    Article  CAS  Google Scholar 

  35. Buso D, Post M, Cantalini C, Mulvaney P, Martucci A (2008) Gold nanoparticle-doped TiO2 semiconductor thin films: Gas sensing properties. Adv Fun Mat 18:3843–3849

    Article  CAS  Google Scholar 

  36. Sadek AZ, Buso D, Martucci A, Mulvaney P, Wlodarski W, Kalantar-Zadeh K (2008) Titanium Dioxide-Based 64° YX LiNbO3 Surface Acoustic Wave Hydrogen Gas Sensors. J Sensors Article ID 254283

  37. Manera MG, Spadavecchia J, Buso D, de Julián Fernández C, Mattei G, Martucci A, Mulvaney P, Pérez-Juste J, Rella R, Vasanelli L, Mazzoldi P (2008) Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sens Act B 132:107–115

    Article  CAS  Google Scholar 

  38. Della Gaspera E, Antonello A, Guglielmi M, Post ML, Bello V, Mattei G, Romanato F, Martucci A (2011) Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties. J Mat Chem 21:4293–4300

    Article  Google Scholar 

  39. Della Gaspera E, Mura A, Menin E, Guglielmi M, Martucci A (2013) Reducing gases and VOCs optical sensing using surface plasmon spectroscopy of porous TiO2-Au colloidal films. Sens Act B 187:363–370

    Article  Google Scholar 

  40. Antonello A, Della Gaspera E, Baldauf J, Mattei G, Martucci A (2011) Improved thermal stability of Au nanorods by use of photosensitive layered titanates for gas sensing applications. J Mat Chem 21:13074–13078

    Article  CAS  Google Scholar 

  41. Della Gaspera E, Bersani M, Mattei G, Nguyen T-L, Mulvaney P, Martucci A (2012) Cooperative effect of Au and Pt inside TiO2 matrix for optical hydrogen detection at room temperature using surface plasmon spectroscopy. Nanoscale 4:5972–5979

    Article  Google Scholar 

  42. Collins SSE, Cittadini M, Pecharromán C, Martucci A, Mulvaney P (2015) Hydrogen spillover between single gold nanorods and metal oxide supports: a surface plasmon spectroscopy study. ACS Nano 9:7846–7856

    Article  CAS  Google Scholar 

  43. Buso D, Palmer L, Bello V, Mattei G, Post M, Mulvaney P, Martucci (2009) A Self-assembled gold nanoparticle monolayers in sol-gel matrices: Synthesis and gas sensing applications. J Mater Chem 19:2051–2057

    Article  CAS  Google Scholar 

  44. Della Gaspera E, Karg M, Baldauf J, Jasieniak J, Maggioni G, Martucci A (2011) Au nanoparticle monolayers covered with sol–gel oxide thin films: optical and morphological study. Langmuir 27:13739–13747

    Article  Google Scholar 

  45. Della Gaspera E, Menin E, Maggioni G, Sada C, Martucci A (2018) Au nanoparticle sub-monolayers sandwiched between sol-gel oxide thin films. Materials 11:423–434

    Article  Google Scholar 

  46. Della Gaspera E, Guglielmi M, Martucci A, Giancaterini L, Cantalini C (2012) Enhanced optical and electrical gas sensing response of sol-gel based NiO-Au and ZnO-Au nanostructured thin films. Sens Act B 164:54–63

    Article  Google Scholar 

  47. Della Gaspera E, Guglielmi M, Agnoli S, Granozzi G, Post ML, Bello V, Mattei G, Martucci A (2010) Au nanoparticles in nanocrystalline TiO2-NiO films for SPR-based selective H2S gas sensing. Chem Mat 22:3407–3417

    Article  Google Scholar 

  48. Della Gaspera E, Guglielmi M, Giallongo G, Agnoli S, Granozzi G, Quaglio F, Martucci A (2011) Role of Au nanoparticles and NiTiO3 matrix in H2S sensing and its catalytic oxidation to SOX. Sens Lett 9:591–594

    Article  Google Scholar 

  49. Della Gaspera E, Martucci A (2013) Detecting H2S oscillatory response using surface plasmon spectroscopy. MRS Online Proc Libr 1552:77–82

    Article  Google Scholar 

  50. Giancaterini L, Cantalini C, Cittadini M, Sturaro M, Guglielmi M, Martucci A, Resmini A, Anselmi-Tamburini U (2015) Au and Pt NPs effects on the optical and electrical gas sensing properties of sol-gel-based ZnO thin-film sensors. IEEE. Sensors J 15:1068–1076

    Article  CAS  Google Scholar 

  51. Gaiardo A, Fabbri B, Giberti A, Guidi V, Bellutti P, Malagù C, Valt M, Pepponi G, Gherardi S, Zonta G, Martucci A, Sturaro M, Landini N (2016) ZnO and Au/ZnO thin films: room-temperature chemoresistive properties for gas sensing applications. Sens Act B 237:1085–1094

    Article  CAS  Google Scholar 

  52. Cittadini M, Sturaro M, Guglielmi M, Resmini A, Tredici IG, Anselmi-Tamburini U, Koshy P, Sorrell CC, Martucci A (2015) ZnO nanorods grown on ZnO sol-gel seed films: characteristics and optical gas-sensing properties. Sens Act B 213:493–500

    Article  CAS  Google Scholar 

  53. Della Gaspera E, Guglielmi M, Perotto G, Agnoli S, Granozzi G, Post ML, Martucci A (2012) CO optical sensing properties of nanocrystalline ZnO-Au films: effect of doping with transition metal ions. Sens Act B 161:675–683

    Article  Google Scholar 

  54. Sturaro M, Della Gaspera E, Michieli N, Cantalini C, Emamjomeh SM, Guglielmi M, Martucci A (2016) Degenerately Doped Metal Oxide Nanocrystals as Plasmonic and Chemoresistive Gas Sensors. ACS Appl Mat Interfaces 8:30440–30448

    Article  CAS  Google Scholar 

  55. Brigo L, Cittadini M, Artiglia L, Rizzi GA, Granozzi G, Guglielmi M, Martucci A, Brusatin G (2013) Xylene sensing properties of aryl-bridged polysilsesquioxane thin films coupled to gold NPs. J Mat Chem C 1:4252–4260

    Article  CAS  Google Scholar 

  56. Brigo L, Michieli N, Artiglia L, Scian C, Rizzi GA, Granozzi G, Mattei G, Martucci A, Brusatin G (2014) Silver nanoprism arrays coupled to functional hybrid films for localized surface plasmon resonance-based detection of aromatic hydrocarbons. ACS Appl Mat Interfaces 6:7773–7781

    Article  CAS  Google Scholar 

  57. Colusso E, Perotto G, Wang Y, Sturaro M, Omenetto F, Martucci A (2017) Bioinspired stimuli-responsive multilayer film made of silk–titanate nanocomposites. J Mater Chem C 5:3924–3931

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Guglielmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmi, M., Martucci, A. Sol-gel nanocomposites for optical applications. J Sol-Gel Sci Technol 88, 551–563 (2018). https://doi.org/10.1007/s10971-018-4846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4846-0

Keywords

Navigation