Skip to main content

Advertisement

Log in

Mechanical reinforced fiber needle felt/silica aerogel composite with its flammability

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fiber needle felt–silica aerogel composite was successfully prepared by via sol–gel process based on water glass. The thermal conductivity show V-type variation tendency with the increase of water to Si. Thermogravimetric analysis-differential scanning calorimetry analysis revealed that the thermal stability was up to approximately 390.58 °C. It has been found that the fire hazard of the composites decreased with the increased ratio of water to Si according to the cone calorimeter test, which can be characterized by peak heat release rate, fire performance index, and fire growth rate index. The fiber needle felt/aerogels present greatly improved compressive and flexural strength (elastic modulus: 0.1–0.97 MPa; flexural modulus: 0.33–0.66 MPa) while keeping inherent properties of pure silica aerogel: low bulk density (0.166 g/cm3), low thermal conductivity of 0.0236 W/m·K, and high specific surface area (1091.62 m2/g). As a result, the as-prepared composite shows a great potential to be applied in the thermal insulation field.

Highlights

  • Fiber needle felt reinforced silica aerogel were obtained under ambient pressure.

  • The water glass based aerogel show high flexibility & thermal insulation ability.

  • The composites' flammable ability were studied through cone calorimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu G, Wu Z, Hu M (2012) Energy consumption and management in public buildings in China: an investigation of Chongqing. Energy Procedia 14: 1925-1930

    Article  Google Scholar 

  2. Dai HM, Zhao Q, Lin BQ, He S, Chen XF, Zhang Y, Niu Y, Yin SH (2018) Premixed combustion of low-concentration coal mine methane with water vapor addition in a two-section porous media burner. Fuel 213:72–82

    Article  CAS  Google Scholar 

  3. Wan KKW, Li DHW, Liu D, Lam JC (2011) Future trends of building heating and cooling loads and energy consumption in different climates. Build Environ 46:223–234

    Article  Google Scholar 

  4. He S, Huang DM, Bi HJ, Li Z, Yang H, Cheng XD (2015) Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass. J Non-Cryst Solids 410:58–64

    Article  CAS  Google Scholar 

  5. Pierre AC, Rigacci A (2011) SiO2 aerogels. In: Aegerter AM, Leventis N, Koebel MM (Eds) Aerogels handbook. Springer, New York, NY, pp 21–45

    Chapter  Google Scholar 

  6. Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energ Build 43:761–769

    Article  Google Scholar 

  7. Katti A, Shimpi N, Roy S, Lu HB, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem Mater 18:285–296

    Article  CAS  Google Scholar 

  8. Leventis N, Sotiriou-Leventis C, Zhang GH, Rawashdeh AMM (2002) Nanoengineering strong silica aerogels. Nano Lett 2:957–960

    Article  CAS  Google Scholar 

  9. Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer crosslinked silica aerogels. Polymer (Guildf) 47:5754–5761

    Article  CAS  Google Scholar 

  10. Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang GH, Vassilaras P, Johnston JC, Leventis N (2005) Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem Mater 17:1085–1098

    Article  CAS  Google Scholar 

  11. Nguyen BN, Meador MAB, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B (2010) Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate. ACS Appl Mater Interfaces 2:1430–1443

    Article  CAS  Google Scholar 

  12. Karout A, Buisson P, Perrard A, Pierre AC (2005) Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts. J Sol-Gel Sci Technol 36:163–171

    Article  CAS  Google Scholar 

  13. Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300

    Article  CAS  Google Scholar 

  14. Guanming DZLXY (2006) Study on preparation and performance of SiO_2 aerogels composites reinforced by mullite fiber [J]. N Chem Mater 7:021

    Google Scholar 

  15. Kim C-Y, Lee J-K, Kim B-I (2008) Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method. Colloids Surf A 313:179–182

    Article  Google Scholar 

  16. Yuan B, Ding S, Wang D, Wang G, Li H (2012) Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater Lett 75:204–206

    Article  CAS  Google Scholar 

  17. Li Z, Gong L, Cheng X, He S, Li C, Zhang H (2016) Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater Des 99:349–355

    Article  CAS  Google Scholar 

  18. He S, Sun G, Cheng X, Dai H, Chen X (2017) Nanoporous SiO2 grafted aramid fibers with low thermal conductivity. Compos Sci Technol 146:91–98

    Article  CAS  Google Scholar 

  19. Chandradass J, Kang S, Bae DS (2008) Synthesis of silica aerogel blanket by ambient drying method using water glass based precursor and glass wool modified by alumina sol. J Non-Cryst Solids 354:4115–4119

    Article  CAS  Google Scholar 

  20. Li C, Cheng X, Li Z, Pan Y, Huang Y, Gong L (2017) Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J Non-Cryst Solids 457:52–59

    Article  CAS  Google Scholar 

  21. He S, Yang H, Chen X (2017) Facile synthesis of highly porous silica aerogel granules and its burning behavior under radiation. J Sol-Gel Sci Technol 82:407–416

    Article  CAS  Google Scholar 

  22. Healy JJ, Degroot JJ, Kestin J (1976) Theory of transient hot-wire method for measuring thermal-conductivity. Phys B & C 82:392–408

    Article  Google Scholar 

  23. Li CC, Cheng XD, Li Z, Pan YL, Huang YJ, Gong LL (2017) Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J Non-Cryst Solids 457:52–59

    Article  CAS  Google Scholar 

  24. Wu H, Liao Y, Ding Y, Wang H, Peng C, Yin S (2014) Engineering thermal and mechanical properties of multilayer aligned fiber-reinforced aerogel composites. Heat Transf Eng 35:1061–1070

    Article  CAS  Google Scholar 

  25. Bentz DP (2007) Transient plane source measurements of the thermal properties of hydrating cement pastes. Mater Struct 40:1073–1080

    Article  CAS  Google Scholar 

  26. Zhang YH, Weidenkaff A, Reller A (2002) Mesoporous structure and phase transition of nanocrystalline TiO2. Mater Lett 54:375–381

    Article  CAS  Google Scholar 

  27. Deng ZS, Wang J, Wu AM, Shen J, Zhou B (1998) High strength SiO2 aerogel insulation. J Non-Cryst Solids 225:101–104

    Article  CAS  Google Scholar 

  28. He S, Li Z, Shi X, Yang H, Gong L, Cheng X (2015) Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area. Adv Powder Technol 26:537–541

    Article  CAS  Google Scholar 

  29. Li Z, Cheng X, He S, Shi X, Yang H (2015) Characteristics of ambient-pressure-dried aerogels synthesized via different surface modification methods. J Sol-Gel Sci Technol 76:138–149

    Article  CAS  Google Scholar 

  30. Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) Flexible nanofiber-reinforced aerogel (Xerogel) synthesis, manufacture, and characterization. ACS Appl Mater Interfaces 1:2491–2501

    Article  CAS  Google Scholar 

  31. Pan Y, He S, Cheng X, Li Z, Li C, Huang Y, Gong L (2017) A fast synthesis of silica aerogel powders-based on water glass via ambient drying. J Sol-Gel Sci Technol 82:594–601

    Article  CAS  Google Scholar 

  32. Pan Y, He S, Gong L, Cheng X, Li C, Li Z, Liu Z, Zhang H (2017) Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/water-glass co-precursor prepared by freeze drying. Mater Des 113:246–253

    Article  CAS  Google Scholar 

  33. He S, Chen X (2017) Flexible silica aerogel based on methyltrimethoxysilane with improved mechanical property. J Non-Cryst Solids 463:6–11

    Article  CAS  Google Scholar 

  34. Shi F, Wang L, Liu J (2006) Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater Lett 60:3718–3722

    Article  CAS  Google Scholar 

  35. Li Z, Cheng X, Shi L, He S, Gong L, Li C, Zhang H (2016) Flammability and oxidation kinetics of hydrophobic silica aerogels. J Hazard Mater 320:350–358

    Article  Google Scholar 

  36. Petrella R (1994) The assessment of full-scale fire hazards from cone calorimeter data. J Fire Sci 12:14–43

    Article  CAS  Google Scholar 

  37. Wu G, Yu Y, Cheng X, Zhang Y (2011) Preparation and surface modification mechanism of silica aerogels via ambient pressure drying. Mater Chem Phys 129:308–314

    Article  CAS  Google Scholar 

  38. Coffman BE, Fesmire JE, White S, Gould G, Augustynowicz S (2010) Aerogel blanket insulation materials for cryogenic applications. AIP Conference Proceeding 1218: 913–920.

  39. H Wu, Y Chen, Q Chen, Y Ding, X Zhou, H Gao (2013) Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation. J Nanomater 2013: 1-8.

    Google Scholar 

  40. Shi D, Sun Y, Feng J, Yang X, Han S, Mi C, Jiang Y, Qi H (2013) Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel. Mater Sci Eng A 585:25–31

    Article  CAS  Google Scholar 

  41. Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym 147:89–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (2017YFC0804900 and 2017YFC0804907), the Open Project Program of State Key Laboratory of Fire Science (HZ2017-KF12), and the Natural Science Foundation of China (No. 51706165).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song He or Huaming Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., He, S., Chen, G. et al. Mechanical reinforced fiber needle felt/silica aerogel composite with its flammability. J Sol-Gel Sci Technol 88, 129–140 (2018). https://doi.org/10.1007/s10971-018-4796-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4796-6

Keywords

Navigation