Skip to main content

Advertisement

Log in

Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties

  • Brief Communication: Functional coatings, thin films, and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work reports the preparation of bacterial cellulose (BC) membranes with self-cleaning properties. SiO2@TiO2 (anatase) spherical nanocomposites (around 50 nm in diameter) were prepared by sol–gel process and were successfully immobilized into the BC membrane, in wet and dry states, by post-grafting method, following two different methodologies: dip-coating and spin-coating. Characterization techniques included Raman scattering, energy-dispersive X-ray spectroscopies (EDS), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). The photocatalytic activity was higher in the BC membrane in the wet state, presenting a good self-cleaning performance (fast methyl violet 2B dye decomposition in 30 min). The functional BC membranes with self-cleaning properties also presented high resistance to washing, high chemical stability, and the original features (color and texture) were maintained.

Highlights

  • Development of novel functional bacterial cellulose membranes with self-cleaning properties.

  • Decomposition of methyl violet 2B dye in solution through a photocatalytic process.

  • High resistance to washing (self-cleaning performance).

  • Original features of the membranes (color and texture) maintained.

  • Significant reduction of cleaning actions, allowing a reduction in costs and greater durability of the bacterial cellulose membrane.

  • Environmentally friendly cellulose membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Pecorano E, Manzani D, Messadeq Y, Ribeiro S J L (2008) In: Belgacem M N, Gandini A (ed) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier Science, Amsterdam, The Netherlans.

  2. Jozala AF, de Lencastre-Novales LC, Lopes AM, de Carvalho Santos-Ebinuma V, Mazzola PG, Pessoa-Jr A, Grotto D, Gerenutti M, Chaud MV (2016) Appl Microbiol Biotechnol 100:2063

    Article  Google Scholar 

  3. Barud HS, Caiut JMA, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2012) Compos A 43:973

    Article  Google Scholar 

  4. Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) J Mater Sci 41:5646

    Article  Google Scholar 

  5. Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) J Sol-Gel Sci Technol 46:363

    Article  Google Scholar 

  6. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghyo J, Messaddeq Y, Ribeiro SJL (2008) Mat Sci Eng C 28:515

    Article  Google Scholar 

  7. Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) Mater Sci 25:2997

    Article  Google Scholar 

  8. Legnani C, Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremosa M (2008) Thin Sol Films 517:1016

    Article  Google Scholar 

  9. Yano Y, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Adv Mater 17:153

    Article  Google Scholar 

  10. Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CAJ, Messaddeq Y, Ribeiro SJL (2011) Carbohydr Polym 83:1279

    Article  Google Scholar 

  11. Khalid A, Ullah H, Ul-Islam M, Khan R, Khan S, Ahmad F, Khan T, Wahid F (2017) RSC Adv 7:47662

    Article  Google Scholar 

  12. Ullah S, Ferreira-Neto EP, Pasa AA, Alcântara CCJ, Acuña JJS, Bilmes SA, Ricci MLM, Landers R, Fermino TZ, Rodrigues-Filho UP (2015) Appl Catal B 179:333

    Article  Google Scholar 

  13. Pinto ERP, Barud HS, Silva RR, Palmieri M, Polito WL, Calil VL, Cremosa M, Ribeiro SJL, Messaddeq Y (2015) J Mater Chem C 3:11581

    Article  Google Scholar 

  14. Fujishima A, Zhang X, Tryk D (2008) Surf Sci Rep 63:515

    Article  Google Scholar 

  15. Augustynski J (1993) Electrochim Acta 38:43

    Article  Google Scholar 

  16. Mandzy N, Grulke E, Druffel T (2005) Powder Technol 160:121

  17. Hanaor DAH, Assadi MHN, Li S, Yu AB, Sorrell CC (2012) Comput Mech 50:185

    Article  Google Scholar 

  18. Raj K, Viswanathan B (2009) Indian J Chem 48:1378

    Google Scholar 

  19. Hirano M, Joji T, Inagaki M, Wata H (2004) J Am Ceram Soc 87:35

    Article  Google Scholar 

  20. Hirano M, Nakahara C, Ota K, Tainaike O, Inagaki M (2003) J Solid State Chem 170:39

    Article  Google Scholar 

  21. Herrmann J (1999) Catal Today 53:115

    Article  Google Scholar 

  22. Hirano M, Ota K, Iwata H (2004) Chem Mater 16:3725

    Article  Google Scholar 

  23. Banerjee S, Gopal J, Muraleedharan P, Tyagi A, Raj B (2006) Curr Sci 90:1383

    Google Scholar 

  24. Diebold U (2003) Surf Sci Rep 48:53

    Article  Google Scholar 

  25. Barringer EA, Bowen HK (1982) J Am Ceram Soc 65:199

    Article  Google Scholar 

  26. Hirano M, Nakahara C, Ota K, Inagaki M (2002) J Am Ceram Soc 85:1333

    Article  Google Scholar 

  27. Ding XZ, Liu XH (1996) J Mater Sci Lett 15:1789

    Article  Google Scholar 

  28. Son S, Hwang SH, Kim C, Yun JY, Jang J (2013) ACS Appl Mater Interfaces 5:4815

    Article  Google Scholar 

  29. Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1997) Catal Lett 45:165

    Article  Google Scholar 

  30. Iler R (1978) The chemistry of silica. Wiley-Interscience, New York

  31. Fink A, Stöber W, Bohnn E (1968) J Colloid Interface Sci 26:62

    Article  Google Scholar 

  32. Periyat P, Baiju K, Mukundan P, Pillai P, Warrier KGK (2008) Appl Catal A Gen 349:13

    Article  Google Scholar 

  33. Cheng P, Zheng M, Jin Y, Huang Q, Gu M (2003) Matter Lett 57:2989

    Article  Google Scholar 

  34. Friesen D, Morello L, Headley JV, Lanford CH (2000) Photochem Photobiol A Chem 133:213

    Article  Google Scholar 

  35. Qi K, Chen X, Liu Y, Xin JH, Mak CL, Daoud A (2007) J Mater Chem 17:3504

    Article  Google Scholar 

  36. Kobler J, Möller K, Bein T (2008) ACS Nano 2:791

    Article  Google Scholar 

  37. Möller K, Kobler J, Bein T (2007) Adv Funct Mater 17:605

    Article  Google Scholar 

  38. Möller K, Kobler J, Bein T (2007) J Mater Chem 17:624

    Article  Google Scholar 

  39. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons Ltd, Chichester, UK

    Google Scholar 

  40. Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) J Nanomater 2011:10

    Article  Google Scholar 

  41. Juma AO, Acik IO, Mikli V, Mere A, Krunks M (2015) Thin Solid Films 594:287

    Article  Google Scholar 

  42. Larson I, Drummond CJ, Chan DYC, Grieser F (1993) J Am Chem Soc 115:11885

    Article  Google Scholar 

  43. Subramaniam K, Yiacoumi S, Tsouri C (2000) Colloids Surf A 177:133

    Article  Google Scholar 

  44. Papp J, Soled S, Dwight K, Wold A (1994) Chem Mater 6:496

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by Fundação de Amparo à pesquisa do estado de São Paulo (FAPESP), through project 2015/12908-2. ASM is thankful to FAPESP for a grant. The authors thank André Tobello Foundation for effering the strain Gluconacetobacter xylinum (ATCC23760) LNNano-CNPEM (Campinas, Brazil) for the use of the JEOL-JEM 2100 F STEM microscope and Dr. Sajjad Ullah for help in XRFA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. L. Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, A.S., Domeneguetti, R.R., Wong Chi Man, M. et al. Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties. J Sol-Gel Sci Technol 89, 2–11 (2019). https://doi.org/10.1007/s10971-018-4744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4744-5

Keywords

Navigation