Advertisement

New precursors for the preparation of pH-sensitive, targeting, and loaded non-porous bridged silsesquioxane nanoparticles

  • C. Théron
  • A. Birault
  • M. Bernhardt
  • L. M. A. Ali
  • C. Nguyen
  • M. Gary-Bobo
  • J. R. Bartlett
  • M. Wong Chi Man
  • C. Carcel
BRIEF COMMUNICATION: SOL-GEL AND HYBRID MATERIALS FOR BIOLOGICAL AND HEALTH (MEDICAL) APPLICATIONS
  • 79 Downloads

Abstract

Two new tetrasilylated precursors based on a triazine derivative with molecular recognition properties have been synthesized and are shown to efficiently produce pH-sensitive, targeting, and (one-step) loaded non-porous bridged silsesquioxane nanoparticles (nano-BS). This was achieved by the sol−gel hydrolysis−condensation of the precursors in the presence of cyanuric acid (CA) H-bonded through the three complementary faces and mimicking 5-fluorouracil (5-FU) anticancer drug. The complex in the nano-BS is not affected under neutral medium and operates under acidic conditions to deliver the loaded molecule, as demonstrated by FTIR spectroscopic studies. Furthermore, thanks to the presence of the amino function, the nano-BS could be functionalized with targeting or fluorescent systems. Indeed, the grafting of fluorescein isothiocyanate revealed the internalization into cancer cells, confirming that nano-BS are promising materials as carriers to avoid the side effects of anticancer drug due to a controlled and targeted drug delivery.

SEM and confocal images of nano-BS.

Keywords

Bridged silsesquioxane nanoparticles Drug delivery pH-sensitive One-step drug loading Targeting 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shea KJ, Loy DA, Webster OW (1989) Aryl-bridged polysilsesquioxanes—new microporous materials. Chem Mater 1(6):572–574.  https://doi.org/10.1021/cm00006a003 CrossRefGoogle Scholar
  2. 2.
    Corriu RJP, Moreau JJE, Thepot P, Wong Chi Man M (1992) New mixed organic-inorganic polymers: hydrolysis and polycondensation of bis(trimethoxysilyl)organometallic precursors. Chem Mater 4(6):1217–1224.  https://doi.org/10.1021/cm00024a020 CrossRefGoogle Scholar
  3. 3.
    Sanchez C, Ribot F (1994) Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J Chem 18(10):1007–1047Google Scholar
  4. 4.
    Shea KJ, Moreau JJE, Loy DA, Corriu RJP, Boury B (2004) In: Gómez-Romero P and Sanchez C (eds) Functional hybrid materials. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Elias X, Pleixats R, Wong Chi Man M, Moreau JJE (2006) Hybrid‐bridged silsesquioxane as recyclable metathesis catalyst derived from a bis‐silylated hoveyda‐type ligand. Adv Synth Catal 348(6):751–762CrossRefGoogle Scholar
  6. 6.
    Monge-Marcet A, Pleixats R, Cattoën X, Wong Chi Man M (2013) Catalytic applications of recyclable silica immobilized NHC–ruthenium complexes. Tetrahedron 69(1):341–348.  https://doi.org/10.1016/j.tet.2012.10.023 CrossRefGoogle Scholar
  7. 7.
    Ferré M, Pleixats R, Wong Chi Man M, Cattoën X (2016) Recyclable organocatalysts based on hybrid silicas. Green Chem 18(4):881–922CrossRefGoogle Scholar
  8. 8.
    Ferré M, Cattoën X, Wong Chi Man M, Pleixats R (2016) Sol–gel immobilized n‐heterocyclic carbene gold complex as a recyclable catalyst for the rearrangement of allylic esters and the cycloisomerization of γ‐alkynoic acids. ChemCatChem 8(17):2824–2831CrossRefGoogle Scholar
  9. 9.
    Graffion J, Cattoën X, Freitas VT, Ferreira RA, Wong Chi Man M, Carlos LD (2012) Engineering of metal-free bipyridine-based bridged silsesquioxanes for sustainable solid-state lighting. J Mater Chem 22(14):6711–6715CrossRefGoogle Scholar
  10. 10.
    Freitas VT, Fu L, Cojocariu AM, Cattoën X, Bartlett JR, Le Parc R, Bantignies J-L, Wong Chi Man M, Andre PS, Ferreira RA (2015) Eu3+-based bridged silsesquioxanes for transparent luminescent solar concentrators. ACS Appl Mater Interfaces 7(16):8770–8778CrossRefGoogle Scholar
  11. 11.
    Bourg S, Broudic J-C, Conocar O, Moreau JJE, Meyer D, Wong Chi Man M (2001) Tailoring of organically modified silicas for the solid− liquid extraction of actinides. Chem Mater 13(2):491–499CrossRefGoogle Scholar
  12. 12.
    Meyer DJ, Bourg S, Conocar O, Broudic J-C, Moreau JJE, Wong Chi Man M (2007) Extraction of plutonium and americium using silica hybrid materials. Comptes Rendus Chim 10(10):1001–1009CrossRefGoogle Scholar
  13. 13.
    Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Aqueous sol−gel process for protein encapsulation. Chem Mater 12(8):2434–2441CrossRefGoogle Scholar
  14. 14.
    Barbe C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: a novel drug‐delivery system. Adv Mater 16(21):1959–1966CrossRefGoogle Scholar
  15. 15.
    Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16(11):1013–1030CrossRefGoogle Scholar
  16. 16.
    Chevalier P, Corriu RJP, Delord P, Moreau JJE, Wong Chi Man M (1998) Design of porous silica from hybrid organic–inorganic precursors. New J Chem 22(5):423–433CrossRefGoogle Scholar
  17. 17.
    Boury B, Chevalier P, Corriu RJP, Delord P, Moreau JJE, Wong Chi Man M (1999) Hybrid organic−inorganic xerogel access to meso-and microporous silica by thermal and chemical treatment. Chem Mater 11(2):281–291CrossRefGoogle Scholar
  18. 18.
    Asefa T, MacLachlan MJ, Coombs N, Ozin GA (1999) Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402(6764):867–871. http://www.nature.com/nature/journal/v402/n6764/suppinfo/402867a0_S1.htmlCrossRefGoogle Scholar
  19. 19.
    Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc 121(41):9611–9614.  https://doi.org/10.1021/ja9916658 CrossRefGoogle Scholar
  20. 20.
    Urata C, Yamada H, Wakabayashi R, Aoyama Y, Hirosawa S, Arai S, Takeoka S, Yamauchi Y, Kuroda K (2011) Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. J Am Chem Soc 133(21):8102–8105CrossRefGoogle Scholar
  21. 21.
    Li X, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao D (2014) Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc 136(42):15086–15092CrossRefGoogle Scholar
  22. 22.
    Croissant JG, Cattoën X, Wong Chi Man M, Durand J-O, Khashab NM (2015) Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 7(48):20318–20334CrossRefGoogle Scholar
  23. 23.
    Croissant J, Cattoën X, Wong Chi Man M, Dieudonné P, Charnay C, Raehm L, Durand JO (2015) One‐pot construction of multipodal hybrid periodic mesoporous organosilica nanoparticles with crystal‐like architectures. Adv Mater 27(1):145–149CrossRefGoogle Scholar
  24. 24.
    Chen Y, Shi J (2016) Chemistry of mesoporous organosilica in nanotechnology: molecularly organic–inorganic hybridization into frameworks. Adv Mater 28(17):3235–3272CrossRefGoogle Scholar
  25. 25.
    Giret S, Wong Chi Man M, Carcel C (2015) Mesoporous-silica-functionalized nanoparticles for drug delivery. Chemistry 21(40):13850–13865.  https://doi.org/10.1002/chem.201500578 CrossRefGoogle Scholar
  26. 26.
    Lin CXC, Qiao SZ, Yu CZ, Ismadji S, Lu GQM (2009) Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Microporous Mesoporous Mater 117(1):213–219CrossRefGoogle Scholar
  27. 27.
    Vathyam R, Wondimu E, Das S, Zhang C, Hayes S, Tao Z, Asefa T (2011) Improving the adsorption and release capacity of organic-functionalized mesoporous materials to drug molecules with temperature and synthetic methods. J Phys Chem C 115(27):13135–13150CrossRefGoogle Scholar
  28. 28.
    Moorthy MS, Park S-S, Fuping D, Hong S-H, Selvaraj M, Ha C-S (2012) Step-up synthesis of amidoxime-functionalised periodic mesoporous organosilicas with an amphoteric ligand in the framework for drug delivery. J Mater Chem 22(18):9100–9108CrossRefGoogle Scholar
  29. 29.
    Yang Y, Bernardi S, Song H, Zhang J, Yu M, Reid JC, Strounina E, Searles DJ, Yu C (2016) Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: understanding the composition gradient. Chem Mater 28(3):704–707CrossRefGoogle Scholar
  30. 30.
    Yang Y, Lu Y, Abbaraju PL, Zhang J, Zhang M, Xiang G, Yu C (2017) Multi‐shelled dendritic mesoporous organosilica hollow spheres: roles of composition and architecture in cancer immunotherapy. Angew Chem 129:8566–8570CrossRefGoogle Scholar
  31. 31.
    Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91(Supplement C):90–127.  https://doi.org/10.1016/j.biomaterials.2016.03.019 CrossRefGoogle Scholar
  32. 32.
    Mizoshita N, Tani T, Shinokubo H, Inagaki S (2012) Mesoporous organosilica hybrids consisting of silica-wrapped π–π stacking columns. Angew Chem Int Ed 51(5):1156–1160.  https://doi.org/10.1002/anie.201105394 CrossRefGoogle Scholar
  33. 33.
    Giret S, Théron C, Gallud A, Maynadier M, Gary-Bobo M, Garcia M, Wong Chi Man M, Carcel C (2013) A designed 5-fluorouracil-based bridged silsesquioxane as an autonomous acid-triggered drug-delivery system. Chemistry 19(38):12806–12814.  https://doi.org/10.1002/chem.201301081 CrossRefGoogle Scholar
  34. 34.
    Fertier L, Théron C, Carcel C, Trens P, Wong Chi Man M (2011) pH-Responsive bridged silsesquioxane. Chem Mater 23(8):2100–2106.  https://doi.org/10.1021/cm103327y CrossRefGoogle Scholar
  35. 35.
    Croissant J, Maynadier M, Mongin O, Hugues V, Blanchard‐Desce M, Chaix A, Cattoën X, Wong Chi Man M, Gallud A, Gary‐Bobo M, Garcia M, Raehm L, Durand J (2015) Enhanced two‐photon fluorescence imaging and therapy of cancer cells via gold@ bridged silsesquioxane nanoparticles. Small 11(3):295–299CrossRefGoogle Scholar
  36. 36.
    Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, De Cola L (2016) Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8(13):7240–7247CrossRefGoogle Scholar
  37. 37.
    Mauriello-Jimenez C, Henry M, Aggad D, Raehm L, Cattoën X, Wong Chi Man M, Charnay C, Alpugan S, Ahsen V, Tarakci DK, Maillard P, Maynadier M, Garcia M, Dumoulin F, Gary-Bobo M, Coll J, Josserand V, Durand J (2017) Porphyrin-or phthalocyanine-bridged silsesquioxane nanoparticles for two-photon photodynamic therapy or photoacoustic imaging. Nanoscale 9(43):16622–16626CrossRefGoogle Scholar
  38. 38.
    Croissant JG, Mauriello-Jimenez C, Maynadier M, Cattoën X, Wong Chi Man M, Raehm L, Mongin O, Blanchard-Desce M, Garcia M, Gary-Bobo M (2015) Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells. Chem Commun 51(61):12324–12327CrossRefGoogle Scholar
  39. 39.
    Mauriello-Jimenez C, Croissant J, Maynadier M, Cattoën X, Wong Chi Man M, Vergnaud J, Chaleix V, Sol V, Garcia M, Gary-Bobo M, Raehm L, Durand J (2015) Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. J Mater Chem B 3(18):3681–3684CrossRefGoogle Scholar
  40. 40.
    Gao Y, Chen L, Zhang Z, Gu W, Li Y (2010) Linear cationic click polymer for gene delivery: synthesis, biocompatibility, and in vitro transfection. Biomacromolecules 11(11):3102–3111.  https://doi.org/10.1021/bm100906m CrossRefGoogle Scholar
  41. 41.
    Bürglová K, Noureddine A, Hodačová J, Toquer G, Cattoën X, Wong Chi Man M (2014) A general method for preparing bridged organosilanes with pendant functional groups and functional mesoporous organosilicas. Chem Eur J 20(33):10371–10382CrossRefGoogle Scholar
  42. 42.
    Noureddine A, Trens P, Toquer G, Cattoën X, Wong Chi Man M (2014) Tailoring the hydrophilic/lipophilic balance of clickable mesoporous organosilicas by the copper-catalyzed azide–alkyne cycloaddition click-functionalization. Langmuir 30(41):12297–12305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. Théron
    • 1
  • A. Birault
    • 1
    • 2
  • M. Bernhardt
    • 1
  • L. M. A. Ali
    • 3
  • C. Nguyen
    • 3
  • M. Gary-Bobo
    • 3
  • J. R. Bartlett
    • 2
  • M. Wong Chi Man
    • 1
  • C. Carcel
    • 1
  1. 1.ICGM, Univ MontpellierCNRS, ENSCMMontpellierFrance
  2. 2.Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastMaroochydore DCAustralia
  3. 3.Institut des Biomolécules Max Mousseron UMR 5247 CNRS-UMFaculté de PharmacieMontpellier Cedex 05France

Personalised recommendations