Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 459–467 | Cite as

TiO2/ZnO composite nanodots films and their cellular responses

  • Lili Yao
  • Yu Sun
  • Wenjian Weng
  • Jun Lin
  • Kui Cheng
Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications


In the present study, TiO2/ZnO composite nanodot films were prepared and the effects of Zn incorporation on light-induced cell detachment were investigated. The nanodots films, which were successfully synthesized by phase-separation-induced self-assembly method, were characterized on the morphology, composition, microstructure, and other properties, and evaluated on cell compatibility and cell detachment performances as well. Live-dead staining was used to study the viability of cell sheet detached by light illumination. Results shows that with the increasing of introduced Zn, the band gap widened and the absorbance in UV region increased, while the crystallinity and performance of light-induced hydrophilicity weakened. All the nanodots films showed good cell compatibility and cell detachment performance induced by light. The nanodots film which had a Zn/Ti molar ratio of 0.03 showed the highest detachment ratio of 91.0% after 20 min ultraviolet illumination. The prepared TiO2/ZnO composite nanodots films could be helpful in optimizing light-induced cell detachment behavior.


TiO2/ZnO Light-induced Composite nanodots Film Cell detachment 



This work was financially supported by National Science Foundation of China (51372217, 31570962, and 51472216), Zhejiang provincial Natural Science Foundation (LY15E020004), and the 111 Project under Grant No.B16042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zheng Q, Iqbal SM, Wan Y (2013) Cell detachment: Post-isolation challenges. Biotechnol Adv 31(8):1664–1675CrossRefGoogle Scholar
  2. 2.
    Yang J, Yamato M, Nishida K, Ohki T, Kanzaki M, Sekine H, Shimizu T, Okano T (2006) Cell delivery in regenerative medicine: The cell sheet engineering approach. J Control Release 116(2):193–203CrossRefGoogle Scholar
  3. 3.
    Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28(34):5033–5043CrossRefGoogle Scholar
  4. 4.
    Chen Y-H, Chung Y-C, Wang I, Young T-H (2012) Control of cell attachment on pH-responsive chitosan surface by precise adjustment of medium pH. Biomaterials 33(5):1336–1342CrossRefGoogle Scholar
  5. 5.
    Masuda S, Shimizu T, Yamato M, Okano T (2008) Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev 60(2):277–285CrossRefGoogle Scholar
  6. 6.
    Inaba R, Khademhosseini A, Suzuki H, Fukuda J (2009) Electrochemical desorption of self-assembled monolayers for engineering cellular tissues. Biomaterials 30(21):3573–3579CrossRefGoogle Scholar
  7. 7.
    Pasparakis G, Manouras T, Selimis A, Vamvakaki M, Argitis P (2011) Laser‐induced cell detachment and patterning with photodegradable polymer substrates. Angew Chem 123(18):4228–4231CrossRefGoogle Scholar
  8. 8.
    Wirkner M, Alonso JM, Maus V, Salierno M, Lee TT, García AJ, del Campo A (2011) Triggered cell release from materials using bioadhesive photocleavable linkers. Adv Mater 23(34):3907–3910CrossRefGoogle Scholar
  9. 9.
    Ito A, Ino K, Kobayashi T, Honda H (2005) The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 26(31):6185–6193CrossRefGoogle Scholar
  10. 10.
    Chen SJ, Yu HY, Yang BC (2013) Bioactive TiO2 fiber films prepared by electrospinning method. J Biomed Mater Res Part A 101(1):64–74CrossRefGoogle Scholar
  11. 11.
    Kar A, Raja KS, Misra M (2006) Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf Coat Technol 201(6):3723–3731CrossRefGoogle Scholar
  12. 12.
    Kasuga T, Kondo H, Nogami M (2002) Apatite formation on TiO2 in simulated body fluid. J Cryst Growth 235(1–4):235–240CrossRefGoogle Scholar
  13. 13.
    Sul YT, Johansson C, Byon E, Albrektsson T (2005) The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 26(33):6720–6730CrossRefGoogle Scholar
  14. 14.
    Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater 14(6):2812–2816CrossRefGoogle Scholar
  15. 15.
    Cheng K, Sun Y, Wan H, Wang X, Weng W, Lin J, Wang H (2015) Improved light-induced cell detachment on rutile TiO(2) nanodot films. Acta Biomater 26:347–354CrossRefGoogle Scholar
  16. 16.
    Cheng K, Wan HP, Weng WJ (2015) A facile approach to improve light induced cell sheet harvesting through nanostructure optimization. RSC Adv 5(108):88965–88972CrossRefGoogle Scholar
  17. 17.
    Hong Y, Yu MF, Weng WJ, Cheng K, Wang HM, Lin J (2013) Light-induced cell detachment for cell sheet technology. Biomaterials 34(1):11–18CrossRefGoogle Scholar
  18. 18.
    Wang X, Cheng K, Weng W, Wang H, Lin J (2016) Light-induced cell-sheet harvest on TiO2 films sensitized with carbon quantum dots. ChemPlusChem 81(11):1166–1173CrossRefGoogle Scholar
  19. 19.
    Jiang ZW, Xi Y, Lai KC, Wang Y, Wang HM, Yang GL (2017) Laminin-521 promotes rat bone marrow mesenchymal stem cell sheet formation on light-induced cell sheet technology. Biomed Res Int 9474573:1–11Google Scholar
  20. 20.
    Liu RL, Ye HY, Xiong XP, Liu HQ (2010) Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater Chem Phys 121(3):432–439CrossRefGoogle Scholar
  21. 21.
    Park JY, Choi SW, Lee JW, Lee C, Kim SS (2009) Synthesis and gas sensing properties of TiO2-ZnO core-shell nanofibers. J Am Ceram Soc 92(11):2551–2554CrossRefGoogle Scholar
  22. 22.
    Bensouyad H, Adnane D, Dehdouh H, Toubal B, Brahimi M, Sedrati H, Bensaha R (2011) Correlation between structural and optical properties of TiO2:ZnO thin films prepared by sol–gel method. J Sol-Gel Sci Technol 59(3):546–552CrossRefGoogle Scholar
  23. 23.
    Parsi Benehkohal N, Demopoulos GP (2012) Green preparation of TiO2-ZnO nanocomposite photoanodes by aqueous electrophoretic deposition. J Electrochem Soc 159(5):B602–B610CrossRefGoogle Scholar
  24. 24.
    Fielding GA, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28(2):113–122CrossRefGoogle Scholar
  25. 25.
    Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc 126(1):62–63CrossRefGoogle Scholar
  26. 26.
    Ji XX, Liu WM, Leng YM, Wang AH (2015) Facile synthesis of ZnO@TiO2 core-shell nanorod thin films for dye-sensitized solar cells. J Nanomater 647089:1–5Google Scholar
  27. 27.
    Shao D, Sun H, Xin G, Lian J, Sawyer S (2014) High quality ZnO–TiO2 core–shell nanowires for efficient ultraviolet sensing. Appl Surf Sci 314:872–876CrossRefGoogle Scholar
  28. 28.
    Luo M, Cheng K, Weng W, Song C, Du P, Shen G, Xu G, Han G (2009) Size- and density-controlled synthesis of TiO2 nanodots on a substrate by phase-separation-induced self-assembly. Nanotechnology 20(21):215605CrossRefGoogle Scholar
  29. 29.
    Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2 2. Science 297(5590):2243–2245CrossRefGoogle Scholar
  30. 30.
    Virkutyte J, Baruwati B, Varma RS (2010) Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst. Nanoscale 2(7):1109–1111CrossRefGoogle Scholar
  31. 31.
    Guarani V, Deflorian G, Franco CA, Krüger M, Phng L-K, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MH (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473(7346):234–238CrossRefGoogle Scholar
  32. 32.
    Kessler VG (2009) The chemistry behind the sol–gel synthesis of complex oxide nanoparticles for bio-imaging applications. J Sol-Gel Sci Technol 51(3):264–271CrossRefGoogle Scholar
  33. 33.
    Gao Y, Elder SA (2000) TEM study of TiO2 nanocrystals with different particle size and shape. Mater Lett 44(3-4):228–232CrossRefGoogle Scholar
  34. 34.
    Kanai H, Imai M, Takahashi T (1985) A high-resolution transmission electron microscope study of a zinc oxide varistor. J Mater Sci 20(11):3957–3966CrossRefGoogle Scholar
  35. 35.
    Parsi Benehkohal N, Gomez MA, Gauvin R, Demopoulos GP (2013) Enabling aqueous electrophoretic growth of adherent nanotitania mesoporous films via intrafilm cathodic deposition of hydrous zinc oxide. Electrochim Acta 87:169–179CrossRefGoogle Scholar
  36. 36.
    Yang L, Zhang Y, Ruan W, Zhao B, Xu W, Lombardi JR (2010) Improved surface‐enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant. J Raman Spectrosc 41(7):721–726Google Scholar
  37. 37.
    Ku Y, Huang Y-H, Chou Y-C (2011) Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr(VI) in aqueous solution. J Mol Catal a-Chem 342–343:18–22CrossRefGoogle Scholar
  38. 38.
    Fragala ME, Cacciotti I, Aleeva Y (2010) Core–shell Zn-doped TiO2–ZnO nanofibers fabricated via a combination of electrospinning and metal–organic chemical vapour deposition. CrystEngComm 12(11):3858–3865CrossRefGoogle Scholar
  39. 39.
    Li S-j, Lin Y, Tan W-w, Zhang J-b, Zhou X-w, Chen J-m,Chen Z (2010) Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes Int J Miner Metall Mater 17(1):92–97CrossRefGoogle Scholar
  40. 40.
    Kessler VG, Seisenbaeva GA, Unell M, Hakansson S (2008) Chemically triggered biodelivery using metal-organic sol-gel synthesis. Angew Chem 47(44):8506–8509CrossRefGoogle Scholar
  41. 41.
    Nica IC, Stan MS, Popa M, Chifiriuc MC, Lazar V, Pircalabioru GG, Dumitrescu I, Ignat M, Feder M, Tanase LC, Mercioniu I, Diamandescu L, Dinischiotu A (2017) Interaction of new-developed TiO(2)-based photocatalytic nanoparticles with pathogenic microorganisms and human dermal and pulmonary fibroblasts. Int J Mol Sci 18(249):1–23Google Scholar
  42. 42.
    Li L, Ma W, Cheng X, Ren X, Xie Z, Liang J (2016) Synthesis and characterization of biocompatible antimicrobial N-halamine-functionalized titanium dioxide core-shell nanoparticles. Colloids Surf B Biointerfaces 148:511–517CrossRefGoogle Scholar
  43. 43.
    Laurenti M, Cauda V (2017) ZnO nanostructures for tissue engineering applications. Nanomaterials 7(11):374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lili Yao
    • 1
  • Yu Sun
    • 1
  • Wenjian Weng
    • 1
  • Jun Lin
    • 2
  • Kui Cheng
    • 1
  1. 1.School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and ApplicationsZhejiang UniversityHangzhouChina
  2. 2.The First Affiliated Hospital of Medical CollegeZhejiang UniversityHangzhouChina

Personalised recommendations