Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 274–284 | Cite as

Water-soluble polymers as chelating agents for the deposition of Er3+/Yb3+:LiNbO3 waveguiding films

  • D. Mikolášová
  • K. Rubešová
  • V. Jakeš
  • P. Nekvindová
  • Z. Zlámalová Cílová
  • J. Oswald
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)


Compared to other oxide materials, the sol-gel deposition of an optically transparent LiNbO3 waveguiding film of sufficient thickness (approx. 1 μm) is complicated by the presence of a highly hydrolyzing Nb(V) in the starting solution. Thicker films require more concentrated solutions that are not easily achieved for such ions. This problem may be solved using strong chelating agents such as water-soluble polymers. To prepare a stable Er(III)/Yb(III)/Li(I)/Nb(V)/2-methoxyethanol solution with high metal concentration, we tested three such polymers: polyethylene glycol (PEG), polyacrylic acid (PAA) and polyvinyl alcohol (PVA), and compared them with already used polyvinylpyrrolidone (PVP). The solutions were spin-coated on crystalline sapphire substrates under a multi-step heating-deposition regime. Apart from Er3+/Yb3+ photoluminescence properties, we evaluated the influence of the film microstructure (SEM, AFM) on optical transparency and waveguiding ability in the UV/Vis/NIR region (transmission and m-line spectroscopy). Among the newly tested polymers, only PEG was able to prevent Nb(V) hydrolysis up to a maximum metal concentration of 0.6 mol/L. For PEG and PVP, the crystallization temperature of the deposited films (between 700 °C and 1000 °C) was compared. After further optimization of the heating-deposition process, we were able to prepare a transparent Er3+/Yb3+:LiNbO3 film thick enough to guide an optical signal in the NIR region. Thus, the use of PEG results is one of the very few non-hydrolytic sol-gel methods suitable for the preparation of not only luminescent, but also waveguiding Er3+/Yb3+:LiNbO3 structures.


Lithium niobate Polyethylene glycol Polyvinylpyrrolidone Sol-gel Waveguide Erbium 



This work was financially supported by specific university research (MSMT No. 20-SVV/2017) and by the GA CR, project No. P108/12/G108.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Arizmendi L (2004) Photonic applications of lithium niobate crystals. Phys Status Solidi (a) 201(2):253–283CrossRefGoogle Scholar
  2. 2.
    Bartasyte A, Margueron S, Baron T, Oliveri S, Boulet P (2017) Toward high-quality epitaxial LiNbO3 and LiTaO3 thin films for acoustic and optical applications. Adv Mater Interfaces 4(8):1600998CrossRefGoogle Scholar
  3. 3.
    Bazzan M, Sada C (2015) Optical waveguides in lithium niobate: recent developments and applications. Appl Phys Rev 2(4):040603CrossRefGoogle Scholar
  4. 4.
    Janner D, Tulli D, García-Granda M, Belmonte M, Pruneri V (2009) Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photonics Rev 3(3):301–313CrossRefGoogle Scholar
  5. 5.
    Wong KK (2002) Properties of lithium niobate. INSPEC. IEE, LondonGoogle Scholar
  6. 6.
    Kaminskii AA (2007) Laser crystals and ceramics: recent advances. Laser Photonics Rev 1(2):93–177CrossRefGoogle Scholar
  7. 7.
    Kenyon AJ (2002) Recent developments in rare-earth doped materials for optoelectronics. Prog Quantum Electron 26(4):225–284CrossRefGoogle Scholar
  8. 8.
    Auzel FE (1973) Materials and devices using double-pumped phosphors with energy-transfer. Proc IEEE 61(6):758–786CrossRefGoogle Scholar
  9. 9.
    Zhang DL, Pun EYB (2006) Emission characteristics of near-stoichiometric Er/Yb-codoped LiNbO3 crystals. J Appl Phys 99(2):023101CrossRefGoogle Scholar
  10. 10.
    Cajzl J, Nekvindová P, Macková A, Malinský P, Oswald J, Staněk S, Vytykáčová S, Špirková J (2016) Optical waveguides in Er:LiNbO3 fabricated by different techniques – a comparison. Opt Mater 53:160–168CrossRefGoogle Scholar
  11. 11.
    Nekvindova P, Svecova B, Cajzl J, Mackova A, Malinsky P, Oswald J, Kolistsch A, Spirkova J (2012) Erbium ion implantation into different crystallographic cuts of lithium niobate. Opt Mater 34(4):652–659CrossRefGoogle Scholar
  12. 12.
    Boulle A, Kilburger S, Bin PD, Millon E, Bin CD, Guinebretière R, Bessaudou A (2009) Role of nanostructure on the optical waveguiding properties of epitaxial LiNbO 3 films. J Phys D 42(14):145403CrossRefGoogle Scholar
  13. 13.
    Kaigawa K, Kawaguchi T, Imaeda M, Sakai H, Fukuda T (1997) Crystal structure of LPE-grown LiNbO3 epitaxial films. J Cryst Growth 177(3-4):217–225CrossRefGoogle Scholar
  14. 14.
    Lee SY, Feigelson RS (1998) Reduced optical losses in MOCVD grown lithium niobate thin films on sapphire by controlling nucleation density. J Cryst Growth 186(4):594–606CrossRefGoogle Scholar
  15. 15.
    Eichorst Dennis J (1988) PDA sol-gel processing of lithium niobate thin-layers on silicon. In: Materials Research Society Symposia Proceedings. Materials Reasearch Society, pp 773–778Google Scholar
  16. 16.
    Rao AVP, Paik DS, Komarneni S (1998) Sol-gel synthesis of lithium niobate powder and thin films using lithium 2,4-pentanedionate as lithium source. J Electroceram 2(3):157–162CrossRefGoogle Scholar
  17. 17.
    Nashimoto K, Moriyama H, Osakabe E (1996) Control of crystallinity in sol-gel derived epitaxial LiNbO3 thin films on sapphire. Jpn J Appl Phys Part 1 35(9B):4936–4940CrossRefGoogle Scholar
  18. 18.
    Takahashi M, Otowa R, Mori H, Sato S, Nishiwaki A, Wakita K, Ohnishi N, Yagi T, Uchida T (2004) Epitaxial growth and characterization of stoichiometric LiNbO3 films prepared by the sol-gel method. J Appl Phys 96(11):6569–6573CrossRefGoogle Scholar
  19. 19.
    Takahashi M, Yamauchi K, Yagi T, Nishiwaki A, Wakita K, Ohnishi N, Hotta K, Sahashi I (2004) Preparation and characterization of high-quality stoichiometric LiNbO3 thick films prepared by the sol-gel method. Thin Solid Films 458(1-2):108–113CrossRefGoogle Scholar
  20. 20.
    Rubešová K, Mikolášová D, Hlásek T, Jakeš V, Nekvindová P, Bouša D, Oswald J (2016) Waveguiding Er3+/Yb3+:LiNbO3 films prepared by a sol–gel method using polyvinylpyrrolidone. J Lumin 176:260–265CrossRefGoogle Scholar
  21. 21.
    Rubešová K, Mikolášová D, Hlásek T, Jakeš V, Nekvindová P, Matějka P, Dendisová M, Cílová ZZ, Oswald J (2017) Ageing of PVP/LiNbO3 solutions and its impact on the optical properties of Er3+/Yb3+:LiNbO3 waveguiding films. J Phys Chem Solids 111:343–348CrossRefGoogle Scholar
  22. 22.
    Pearson RG (1968) Hard and soft acids and bases HSAB Part I, Fundamental principles J Chem Educ 45(9):581–587Google Scholar
  23. 23.
    Casado FJM, Riesco MR, Redondo MI, Choquesillo-Lazarte D, Lopez-Andres S, Cheda JAR (2011) Anhydrous lithium acetate polymorphs and its hydrates: three-dimensional coordination polymers. Cryst Growth Des 11(4):1021–1032CrossRefGoogle Scholar
  24. 24.
    Hussein GAM (2001) Erbium oxide from erbium acetate hydrate; formation, characterization and catalytic activity. Powder Technol 118(3):285–290CrossRefGoogle Scholar
  25. 25.
    Hussein GAM, Balboul BAA (1999) Ytterbium oxide from different precursors: formation and characterization: thermoanalytical studies. Powder Technol 103(2):156–164CrossRefGoogle Scholar
  26. 26.
    Larson DT, Lott LA, Cash DL (1973) Surface film thickness determination by reflectance measurements. Appl Opt 12(6):1271–1275CrossRefGoogle Scholar
  27. 27.
    Tien PK (1971) Light waves in thin films and integrated optics. Appl Opt 10(11):2395–239CrossRefGoogle Scholar
  28. 28.
    Kozuka H, Higuchi A (2001) Single-layer submicron-thick BaTiO3 coatings from poly(vinylpyrrolidone)-containing sols: Gel-to-ceramic film conversion, densification, and dielectric properties. J Mater Res 16(11):3116–3123CrossRefGoogle Scholar
  29. 29.
    Encyclopedia of Polymer Science and Technology (1999–2014), 4th edn. John Wiley and Sons, New JerseyGoogle Scholar
  30. 30.
    Rubešová K, Hlásek T, Jakeš V, Matějka P, Oswald J, Holzhauser P (2014) Ytterbium and erbium derivatives of 2-methoxyethanol and their use in the thin film deposition of Er-doped Yb3Al5O12. J Sol-Gel Sci Technol 70(1):142–148CrossRefGoogle Scholar
  31. 31.
    Han S, Kim C, Kwon D (1997) Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer 38(2):317–323CrossRefGoogle Scholar
  32. 32.
    Hewig GM, Jain K, Sequeda FO, Tom R, Wang P-W (1982) R.F. Sputtering of LiNbO3 thin films. Thin Solid Films 88(1):67–74CrossRefGoogle Scholar
  33. 33.
    Adams MJ (1981) An introduction to optical waveguides. John Wiley and Sons, New YorkGoogle Scholar
  34. 34.
    Tikhomirov VK, Naftaly M, Jha A (1999) Effects of the site symmetry and host polarizability on the hypersensitive transition 3P0→3F2 of Pr3+ in fluoride glasses. J Appl Phys 86(1):351–354CrossRefGoogle Scholar
  35. 35.
    Takahashi M, Yoshiga T, Kajitani N, Takeda Y, Sato S, Wakita K, Ohnishi N, Hotta K, Kurachi M (2006) Epitaxial growth of Er, Ti doped LiNbO3 films prepared by sol-gel method. Jpn J Appl Phys 45(9B):7305–7310CrossRefGoogle Scholar
  36. 36.
    Mikolasova D, Rubesova K, Hlasek T, Jakes V, Oswald J, Remsa J (2015) Influence of preparation conditions on the microstructure and optical properties of LiNbO3 thin films. Ceram-Silikaty 59(2):164–168Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Inorganic ChemistryUniversity of Chemistry and TechnologyPrague 6,Czech Republic
  2. 2.Department of Glass and CeramicsUniversity of Chemistry and Technology Prague 6,Czech Republic
  3. 3.Institute of Physics, the Academy of Sciences of the Czech RepublicPrague 8,Czech Republic

Personalised recommendations