Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 383–390 | Cite as

Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity

  • Sheng Cui
  • Hao Suo
  • Feng Jing
  • Shuwen Yu
  • Jun Xue
  • Xiaodong Shen
  • Benlan Lin
  • Shengjun Jiang
  • Yu Liu
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO aerogels are investigated. The ZrCO composite aerogel consists of the C/ZrO2/ZrC ternary aerogel. The results show that with the increase of R/Zr molar ratios, the specific surface area and bulk density increase with calcination temperature up to 1300 °C, but decrease at even temperature (1500 °C). The specific surface area is as high as 637.4 m2/g for ZrCO composite aerogel (R:Zr = 2:1), which was higher than ever reported. As the heat-treatment temperature increases to 1500 °C, the ZrC crystalline phase occurs and the t-ZrO2 phase still appears within the composite. The thermal conductivity of the carbon fiber mat-reinforced composite aerogel is as low as 0.057 W/m/K at room temperature (25 °C).


Sol–gel ZrCO aerogel nanomaterials specific surface area thermal conductivity 



This work was financially supported by the Industry Program of Science and Technology Support Project of Jiangsu Province (BE2016171), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R35), the Major Program of Natural Science Fund in Colleges and Universities of Jiangsu Province (15KJA430005), the Prospective Joint Research Program of Jiangsu Province (BY2015005-01), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0977), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Blaese D, Garcia DE, Guglielmi P et al (2015) ZrO2 fiber-matrix interfaces in alumina fiber-reinforced model composites. J Eur Ceram Soc 35(5):1593–1598CrossRefGoogle Scholar
  2. 2.
    Gavalas VG, Andrews Rodney, Bhattacharyya Dibakar et al (2015) Carbon nanotube sol−gel composite materials. Nano Lett 1(12):719–721CrossRefGoogle Scholar
  3. 3.
    He J, Li X, Su D et al (2016) Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J Eur Ceram Soc 36(6):1487–1493CrossRefGoogle Scholar
  4. 4.
    Chao X, Yuan W, Shi Q et al (2016) Improvement of thermal stability of zirconia aerogel by addition of yttrium. J Sol Gel Sci Technol 80(3):667–674CrossRefGoogle Scholar
  5. 5.
    Xiang Y, Wang Q, Cao F et al (2017) Sol-gel process and high-temperature property of SiO2/ZrO2-SiO2 composites. Ceram Int 43(1):854–859CrossRefGoogle Scholar
  6. 6.
    Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol Gel Sci Technol 63(3):315–339CrossRefGoogle Scholar
  7. 7.
    Zhong L, Chen XH et al (2014) Synthesis of monolithic zirconia aerogel via a nitric acid assisted epoxide additon method. Rsc Adv 4(60):31666CrossRefGoogle Scholar
  8. 8.
    Schäfer H, Brandt S, Milow B et al (2013) Zirconia-based aerogels via hydrolysis of salts and alkoxides: the influence of the synthesis procedures on the properties of the aerogels. Chem Asian J 8(9):2211–2219CrossRefGoogle Scholar
  9. 9.
    Hu Z, He J, Li X et al (2016) Improvement of thermal stability of ZrO2–SiO2 aerogels by an inorganic–organic synergetic surface modification. J Porous Mat 24(3):657–665Google Scholar
  10. 10.
    Xiong R, Li X, Ji H et al (2014) Thermal stability of ZrO2–SiO2 aerogel modified by Fe(III) ion. J Sol Gel Sci Technol 72(3):496–501CrossRefGoogle Scholar
  11. 11.
    Ren J, Cai X, Yang H et al (2015) Preparation and characterization of high surface area ZrO2 aerogel modified by SiO2. J Porous Mat 22(4):973–978CrossRefGoogle Scholar
  12. 12.
    Wang Q, Li X, Fen W et al (2014) Synthesis of crack-free monolithic ZrO2, aerogel modified by SiO2. J Porous Mat 21(2):127–130CrossRefGoogle Scholar
  13. 13.
    He J, Li X, Su D et al (2016) Super-hydrophobicity hexamethyl-disilazane modified ZrO2-SiO2 aerogels with excellent thermal stability. J Mater Chem A 4(15):5632–5638CrossRefGoogle Scholar
  14. 14.
    Zu G, Shen J, Zou L et al (2016) Highly thermally stable zirconia/silica composite aerogels prepared by supercritical deposition. Microporous Mesoporous Mat 238:90–96CrossRefGoogle Scholar
  15. 15.
    Taavoni-Gilan A, Taheri-Nassaj E, Akhondi H (2009) The effect of zirconia content on properties of Al2O3-ZrO2, (Y2O3) composite nanopowders synthesized by aqueous sol–gel method. J Non Cryst Solids 355(4–5):311–316CrossRefGoogle Scholar
  16. 16.
    Li XK, Liu L, Shen SD et al (2001) The carbothermal reduction synthesis of Zr(C,O) nanoparticles from binary carbonaceous-zirconia aerogel. J Mater Sci Lett 20(18):1663–1665CrossRefGoogle Scholar
  17. 17.
    Li XK, Liu L, Ge S et al (2001) The preparation of Ti(C,N,O) nanoparticles using binary carbonaceous titania aerogel. Carbon 39(6):827–833CrossRefGoogle Scholar
  18. 18.
    Shen XT, Li KZ, Li HJ et al (2010) Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites. Carbon 48(2):344–351CrossRefGoogle Scholar
  19. 19.
    Shen XT, Li KZ, Li HJ et al (2011) The effect of zirconium carbide on ablation of carbon/carbon composites under an oxyacetylene flame. Corros Sci 53(1):105–112CrossRefGoogle Scholar
  20. 20.
    Sun W, Xiong X, Huang BY et al (2009) ZrC ablation protective coating for carbon/carbon composites. Carbon 47(14):3368–3371CrossRefGoogle Scholar
  21. 21.
    Ye L, Qiu W, Li H et al (2013) Preparation and characterization of ZrCO/C composite aerogels. J Sol Gel Sci Technol 65(2):150–159CrossRefGoogle Scholar
  22. 22.
    Feng J, Zhang C, Feng J et al (2011) Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Appl Mater Inter 3(12):4796CrossRefGoogle Scholar
  23. 23.
    Feng J, Feng J, Zhang C (2012) Thermal conductivity of low density carbon aerogels. J Porous Mat 19(5):551–556CrossRefGoogle Scholar
  24. 24.
    Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227CrossRefGoogle Scholar
  25. 25.
    Tamon H, Ishizaka H, Mikami M et al (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35(6):791–796CrossRefGoogle Scholar
  26. 26.
    Cao FC, Ren LL, Li XA (2015) Synthesis of high strength monolithic alumina aerogels at ambient pressure. RSC Adv 5(23):18025–18028CrossRefGoogle Scholar
  27. 27.
    Leventis N, Sotiriouleventis C, Mohite DP et al (2011) Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mater 23(8):2250–2261CrossRefGoogle Scholar
  28. 28.
    Baumann TF, Gash AE, Chinn SC et al (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17(2):395–401CrossRefGoogle Scholar
  29. 29.
    Ma BY, Li Y, Yu JK (2012) A review on synthesis of high performance composites from zircon. Adv Mater Res 391-392:737–740CrossRefGoogle Scholar
  30. 30.
    Deng X, Du S, Zhang H et al (2005) Preparation and characterization of ZrB2–SiC composite powders from zircon via microwave-assisted boro/carbothermal reduction. Ceram Int 41(10):14419–14426CrossRefGoogle Scholar
  31. 31.
    Sondhi A, Morandi C, Reidy RF et al (2013) Theoretical and experimental investigations on the mechanism of carbothermal reduction of zirconia. Ceram Int 39(4):4489–4497CrossRefGoogle Scholar
  32. 32.
    Vasilevskaya A, Almjasheva OV, Gusarov VV (2016) Peculiarities of structural transformations in zirconia nanocrystals. J Nanopart Res 18(7):1–11CrossRefGoogle Scholar
  33. 33.
    Yi X, Zhang L, Wang F et al (2014) Mechanically reinforced composite aerogel blocks by self-growing nanofibers. Rsc Adv 4(89):48601–48605CrossRefGoogle Scholar
  34. 34.
    Wu X, Shao G, Liu S et al (2017) A new rapid and economical one-step method for preparing SiO2 aerogels using supercritical extraction. Powder Technol 312(1):1–10CrossRefGoogle Scholar
  35. 35.
    Wu X, Li W, Shao G et al (2017) Investigation on textural and structural evolution of the novel crack-free equimolar Al2O3-SiO2-TiO2 ternary aerogel during thermal treatment. Ceram Int 43(5):4188–4196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sheng Cui
    • 1
    • 2
  • Hao Suo
    • 1
    • 2
  • Feng Jing
    • 1
    • 2
  • Shuwen Yu
    • 1
    • 2
  • Jun Xue
    • 1
  • Xiaodong Shen
    • 1
    • 2
  • Benlan Lin
    • 1
  • Shengjun Jiang
    • 1
    • 2
  • Yu Liu
    • 3
  1. 1.Department of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjing Tech UniversityNanjingChina
  3. 3.Institute of Chemistry MaterialsCAEPMianyangChina

Personalised recommendations