Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 316–328 | Cite as

Kinetics of the acid-catalyzed hydrolysis of tetraethoxysilane (TEOS) by 29Si NMR spectroscopy and mathematical modeling

  • J. C. Echeverría
  • P. Moriones
  • G. Arzamendi
  • J. J. Garrido
  • M. J. Gil
  • A. Cornejo
  • V. Martínez-Merino
Original Paper: Fundamentals of sol-gel and hybrid materials processing


Tetraethoxysilane (TEOS) is widely used to synthesize siliceous material by the sol–gel process. However, there is still some disagreement about the nature of the limiting step in the hydrolysis and condensation reactions. The goal of this research was to measure the variation in the concentration of intermediates formed in the acid-catalyzed hydrolysis by 29Si NMR spectroscopy, to model the reactions, and to obtain the rate constants and the activation energy for the hydrolysis and early condensation steps. We studied the kinetics of TEOS between pH 3.8 and 4.4, and four temperature values in the range of 277.2–313.2 K, with a TEOS:ethanol:water molar ratio of 1:30:20. Both hydrolysis and the condensation rate speeded up with the temperature and the concentration of oxonium ions. The kinetic constants for hydrolysis reactions increased in each step kh1 < kh2 < kh3 < kh4, but the condensation rate was lower for dimer formation than for the formation of the fully hydrolyzed Si(OH)4. The system was described according to 13 parameters: six of them for the kinetic constants estimated at 298.2 K, six to the activation energies, and one to the equilibrium constant for the fourth hydrolysis. The mathematical model shows a steady increase in the activation energy from 34.5 kJ mol−1 for the first hydrolysis to 39.2 kJ mol−1 in the last step. The activation energy for the condensation reaction from Si(OH)4 was ca. 10 kJ mol−1 higher than the largest activation energy in the hydrolytic reactions. The decrease in the net positive charge on the Si atom contributes to the protonation of the ethoxy group and makes it a better leaving group.


Mathematical modeling kinetic constants TEOS 29Si NMR pH-independent rate constants Activation energy 



This work was supported by “Ministerio de Economía, Industria y Competitividad” (MAT2016-78155-C2-2-R). PM is thankful to the “Departamento de Industria y Tecnología, Comercio y Trabajo” of Navarre Government for a fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4637_MOESM1_ESM.docx (3.5 mb)
Supplementary Information


  1. 1.
    Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753. CrossRefGoogle Scholar
  2. 2.
    Brinker CJ, Scherer GW (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, New York, NY, USAGoogle Scholar
  3. 3.
    Pierre AC (1998) Introduction to Sol-Gel Processing. Kluwer, Boston, USACrossRefGoogle Scholar
  4. 4.
    Wright JD, Sommerdijk NAJM (2001) Sol-Gel Materials: Chemistry and Applications, vol 4. Advanced Chemistry Texts. Taylor & Francis, London, UKGoogle Scholar
  5. 5.
    Estella J, Echeverria JC, Laguna M, Garrido JJ (2007) Silica xerogels of tailored porosity as support matrix for optical chemical sensors. Simultaneous effect of pH, ethanol: TEOS and water: TEOS molar ratios, and synthesis temperature on gelation time, and textural and structural properties. J Non-Cryst Solids 353(3):286–294. CrossRefGoogle Scholar
  6. 6.
    Estella J, Echeverria JC, Laguna M, Garrido JJ (2007) Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater 102(1–3):274–282. CrossRefGoogle Scholar
  7. 7.
    Estella J, Echeverria JC, Laguna M, Garrido JJ (2008) Effect of supercritical drying conditions in ethanol on the structural and textural properties of silica aerogels. J Porous Mater 15(6):705–713. CrossRefGoogle Scholar
  8. 8.
    Jitianu A, Britchi A, Deleanu C, Badescu V, Zaharescu M (2003) Comparative study of the sol-gel processes starting with different substituted Si-alkoxides. J Non-Cryst Solids 319(3):263–279. CrossRefGoogle Scholar
  9. 9.
    Pouxviel JC, Boilot JP (1987) Kinetic simulations and mechanisms of the sol-gel polymerization. J Non-Cryst Solids 94(3):374–386. CrossRefGoogle Scholar
  10. 10.
    Fyfe CA, Aroca PP (1995) Quantitative kinetic-analysis by high-resolution Si-29 NMR-spectroscopy of the initial-stages in the sol-gel formation of silica-gel from tetraethoxysilane. Chem Mater 7(10):1800–1806. CrossRefGoogle Scholar
  11. 11.
    Sanchez J, McCormick A (1992) Kinetic and thermodynamic study of the hydrolysis of silicon alkoxides in acidic alcohol solutions. J Phys Chem 96(22):8973–8979. CrossRefGoogle Scholar
  12. 12.
    Depla A, Lesthaeghe D, van Erp TS, Aerts A, Houthoofd K, Fan F, Li C, Van Speybroeck V, Waroquier M, Kirschhock CEA, Martens JA (2011) Si-29 NMR and UV-raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol-gel chemistry. J Phys Chem C 115(9):3562–3571. CrossRefGoogle Scholar
  13. 13.
    Pouxviel JC, Boilot JP, Beloeil JC, Lallemand JY (1987) NMR-study of the sol-gel polymerization. J Non-Cryst Solids 89(3):345–360. CrossRefGoogle Scholar
  14. 14.
    Zhai Q, Zhou C, Zhao S, Peng C, Han Y (2014) Kinetic study of alkoxysilane hydrolysis under acidic conditions by fourier transform near infrared spectroscopy combined with partial least-squares model. Ind & Eng Chem Res 53(35):13598–13609. CrossRefGoogle Scholar
  15. 15.
    Gualandris V, Babonneau F, Janicke MT, Chmelka B (1998) NMR studies on hydrolysis and condensation reactions of alkoxysilanes containing Si–H bonds. J Sol-Gel Sci Technol 13(1–3):75–80. CrossRefGoogle Scholar
  16. 16.
    Babonneau F, Maquet J (2000) Nuclear magnetic resonance techniques for the structural characterization of siloxane-oxide hybrid materials. Polyhedron 19(3):315–322. CrossRefGoogle Scholar
  17. 17.
    Tejedor-Tejedor MI, Paredes L, Anderson MA (1998) Evaluation of ATR-FTIR spectroscopy as an “in situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions. Chem Mater 10(11):3410–3421. CrossRefGoogle Scholar
  18. 18.
    Sanchez J, Rankin SE, McCormick AV (1996) Si-29 NMR kinetic study of tetraethoxysilane and ethyl-substituted ethoxysilane polymerization in acidic conditions. Ind Eng Chem Res 35(1):117–129. CrossRefGoogle Scholar
  19. 19.
    Assink RA, Kay BD (1988) Sol-gel kinetics. 3. Test of the statistical reaction model. J Non-Cryst Solids 107(1):35–40. CrossRefGoogle Scholar
  20. 20.
    Boonstra AH, Bernards TNM (1989) Hydrolysis condensation-reactions in the acid step of a 2-step silica sol-gel process, investigated with Si-29 NMR at −75 °C. J Non-Cryst Solids 108(3):249–259. CrossRefGoogle Scholar
  21. 21.
    Mazur M, Mlynarik V, Valko M, Pelikan P (2000) The time evolution of the sol-gel process: Si-29 NMR study of the hydrolysis and condensation reactions of tetraethoxysilane. Appl Magn Reson 18(2):187–197. CrossRefGoogle Scholar
  22. 22.
    Fyfe CA, Aroca PP (1997) A kinetic analysis of the initial stages of the sol-gel reactions of methyltriethoxysilane (MTES) and a mixed MTES/tetraethoxysilane system by high-resolution Si-29 NMR spectroscopy. J Phys Chem B 101(46):9504–9509. CrossRefGoogle Scholar
  23. 23.
    Houston PL (2001) Chemical Kinetics and Reaction Dynamics, 1st edn. McGraw-Hill, New York, NY, USAGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato ML, X., Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Revision C.01 edn., Wallingford CT, USAGoogle Scholar
  25. 25.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J Chem Phys 108(2):664–675. CrossRefGoogle Scholar
  26. 26.
    Cioslowski J (1989) A new population analysis based on atomic polar tensors. J Am Chem Soc 111(22):8333–8336. CrossRefGoogle Scholar
  27. 27.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926. CrossRefGoogle Scholar
  28. 28.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789. CrossRefGoogle Scholar
  29. 29.
    Becke AD (1993) Density-functional thermochemistry .3. The role of exact exchange. J Chem Phys 98(7):5648–5652. CrossRefGoogle Scholar
  30. 30.
    Mclean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations .1. 2nd Row Atoms, Z=11–18. J Chem Phys 72(10):5639–5648. CrossRefGoogle Scholar
  31. 31.
    Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112(23):8251–8260. CrossRefGoogle Scholar
  32. 32.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104(14):5497–5509. CrossRefGoogle Scholar
  33. 33.
    Hook RJ (1996) A Si-29 NMR study of the sol-gel polymerisation rates of substituted ethoxysilanes. J Non-Cryst Solids 195(1-2):1–15. CrossRefGoogle Scholar
  34. 34.
    Malier L, Devreux F, Chaput F, Boilot JP (1992) Silicon-29 nuclear magnetic resonance of sol-gel transformation in first steps and after gel time. In: Hench LL, West JK (eds) Chemical Processing of Advanced Materials. John Wiley and Sons, Inc, New York, pp 59–67Google Scholar
  35. 35.
    Colby MW, Osaka A, Mackenzie JD (1988) Temperature-dependence of the gelation of silicon alkoxides. J Non-Cryst Solids 99(1):129–139. CrossRefGoogle Scholar
  36. 36.
    Yang H, Ding Z, Jiang Z, Xiaoping X (1989) Sol-gel process kinetics for Si(OEt)4. J Non-Cryst Solids 112(1-3):449–453CrossRefGoogle Scholar
  37. 37.
    Chojnowski J, Cypryk M, Kazmierski K, Rozga K (1990) The reactivity of monomeric silanol intermediates in the hydrolytic polycondensation of tetraethoxysilane in acidic media. J Non-Cryst Solids 125(1-2):40–49. CrossRefGoogle Scholar
  38. 38.
    Aelion R, Loebel A, Eirich F (1950) Hydrolysis of ethyl silicate. J Am Chem Soc 72(12):5705–5712. CrossRefGoogle Scholar
  39. 39.
    Devreux F, Boilot JP, Chaput F, Lecomte A (1990) Si-29 NMR-study of silicon alkoxides–from the condensation kinetics in solution to the determination of the fractal dimension in aerogels In: Brinker CJ, Zelinsky BJ, Ulrich DR, Clark DE (eds) Better Ceramics through Chemistry IV. Materials Research Society, San Francisco, pp 211–216Google Scholar
  40. 40.
    Devreux F, Boilot JP, Chaput F, Lecomte A (1990) Sol-gel condensation of rapidly hydrolyzed silicon alkoxides - a joint Si-29 NMR and small-angle X-ray-scattering study. Phys Rev A 41(12):6901–6909. CrossRefGoogle Scholar
  41. 41.
    Cheng XL, Chen DR, Liu YJ (2012) Mechanisms of silicon alkoxide hydrolysis-oligomerization reactions: a DFT investigation. Chemphyschem 13(9):2392–2404. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química Aplicada, Edif. Los AcebosUniversidad Pública de NavarraPamplonaSpain
  2. 2.Institute for Advanced Materials, Edif. Jerónimo de AyanzUniversidad Pública de NavarraPamplonaSpain

Personalised recommendations