Skip to main content
Log in

Kinetics of the acid-catalyzed hydrolysis of tetraethoxysilane (TEOS) by 29Si NMR spectroscopy and mathematical modeling

  • Original Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Tetraethoxysilane (TEOS) is widely used to synthesize siliceous material by the sol–gel process. However, there is still some disagreement about the nature of the limiting step in the hydrolysis and condensation reactions. The goal of this research was to measure the variation in the concentration of intermediates formed in the acid-catalyzed hydrolysis by 29Si NMR spectroscopy, to model the reactions, and to obtain the rate constants and the activation energy for the hydrolysis and early condensation steps. We studied the kinetics of TEOS between pH 3.8 and 4.4, and four temperature values in the range of 277.2–313.2 K, with a TEOS:ethanol:water molar ratio of 1:30:20. Both hydrolysis and the condensation rate speeded up with the temperature and the concentration of oxonium ions. The kinetic constants for hydrolysis reactions increased in each step kh1 < kh2 < kh3 < kh4, but the condensation rate was lower for dimer formation than for the formation of the fully hydrolyzed Si(OH)4. The system was described according to 13 parameters: six of them for the kinetic constants estimated at 298.2 K, six to the activation energies, and one to the equilibrium constant for the fourth hydrolysis. The mathematical model shows a steady increase in the activation energy from 34.5 kJ mol−1 for the first hydrolysis to 39.2 kJ mol−1 in the last step. The activation energy for the condensation reaction from Si(OH)4 was ca. 10 kJ mol−1 higher than the largest activation energy in the hydrolytic reactions. The decrease in the net positive charge on the Si atom contributes to the protonation of the ethoxy group and makes it a better leaving group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753. https://doi.org/10.1039/C0cs00136h

    Article  Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, New York, NY, USA

    Google Scholar 

  3. Pierre AC (1998) Introduction to Sol-Gel Processing. Kluwer, Boston, USA

    Book  Google Scholar 

  4. Wright JD, Sommerdijk NAJM (2001) Sol-Gel Materials: Chemistry and Applications, vol 4. Advanced Chemistry Texts. Taylor & Francis, London, UK

    Google Scholar 

  5. Estella J, Echeverria JC, Laguna M, Garrido JJ (2007) Silica xerogels of tailored porosity as support matrix for optical chemical sensors. Simultaneous effect of pH, ethanol: TEOS and water: TEOS molar ratios, and synthesis temperature on gelation time, and textural and structural properties. J Non-Cryst Solids 353(3):286–294. https://doi.org/10.1016/j.jnoncrysol.2006.12.006

    Article  Google Scholar 

  6. Estella J, Echeverria JC, Laguna M, Garrido JJ (2007) Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater 102(1–3):274–282. https://doi.org/10.1016/j.micromeso.2007.01.007

    Article  Google Scholar 

  7. Estella J, Echeverria JC, Laguna M, Garrido JJ (2008) Effect of supercritical drying conditions in ethanol on the structural and textural properties of silica aerogels. J Porous Mater 15(6):705–713. https://doi.org/10.1007/s10934-007-9156-9

    Article  Google Scholar 

  8. Jitianu A, Britchi A, Deleanu C, Badescu V, Zaharescu M (2003) Comparative study of the sol-gel processes starting with different substituted Si-alkoxides. J Non-Cryst Solids 319(3):263–279. https://doi.org/10.1016/S0022-3093(03)00007-3

    Article  Google Scholar 

  9. Pouxviel JC, Boilot JP (1987) Kinetic simulations and mechanisms of the sol-gel polymerization. J Non-Cryst Solids 94(3):374–386. https://doi.org/10.1016/S0022-3093(87)80072-8

    Article  Google Scholar 

  10. Fyfe CA, Aroca PP (1995) Quantitative kinetic-analysis by high-resolution Si-29 NMR-spectroscopy of the initial-stages in the sol-gel formation of silica-gel from tetraethoxysilane. Chem Mater 7(10):1800–1806. https://doi.org/10.1021/Cm00058a008

    Article  Google Scholar 

  11. Sanchez J, McCormick A (1992) Kinetic and thermodynamic study of the hydrolysis of silicon alkoxides in acidic alcohol solutions. J Phys Chem 96(22):8973–8979. https://doi.org/10.1021/j100201a051

    Article  Google Scholar 

  12. Depla A, Lesthaeghe D, van Erp TS, Aerts A, Houthoofd K, Fan F, Li C, Van Speybroeck V, Waroquier M, Kirschhock CEA, Martens JA (2011) Si-29 NMR and UV-raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol-gel chemistry. J Phys Chem C 115(9):3562–3571. https://doi.org/10.1021/jp109901v

    Article  Google Scholar 

  13. Pouxviel JC, Boilot JP, Beloeil JC, Lallemand JY (1987) NMR-study of the sol-gel polymerization. J Non-Cryst Solids 89(3):345–360. https://doi.org/10.1016/S0022-3093(87)80277-6

    Article  Google Scholar 

  14. Zhai Q, Zhou C, Zhao S, Peng C, Han Y (2014) Kinetic study of alkoxysilane hydrolysis under acidic conditions by fourier transform near infrared spectroscopy combined with partial least-squares model. Ind & Eng Chem Res 53(35):13598–13609. https://doi.org/10.1021/ie5012195

    Article  Google Scholar 

  15. Gualandris V, Babonneau F, Janicke MT, Chmelka B (1998) NMR studies on hydrolysis and condensation reactions of alkoxysilanes containing Si–H bonds. J Sol-Gel Sci Technol 13(1–3):75–80. https://doi.org/10.1023/A:1008651221693

    Article  Google Scholar 

  16. Babonneau F, Maquet J (2000) Nuclear magnetic resonance techniques for the structural characterization of siloxane-oxide hybrid materials. Polyhedron 19(3):315–322. https://doi.org/10.1016/s0277-5387(99)00361-7

    Article  Google Scholar 

  17. Tejedor-Tejedor MI, Paredes L, Anderson MA (1998) Evaluation of ATR-FTIR spectroscopy as an “in situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions. Chem Mater 10(11):3410–3421. https://doi.org/10.1021/Cm980146l

    Article  Google Scholar 

  18. Sanchez J, Rankin SE, McCormick AV (1996) Si-29 NMR kinetic study of tetraethoxysilane and ethyl-substituted ethoxysilane polymerization in acidic conditions. Ind Eng Chem Res 35(1):117–129. https://doi.org/10.1021/ie950246q

    Article  Google Scholar 

  19. Assink RA, Kay BD (1988) Sol-gel kinetics. 3. Test of the statistical reaction model. J Non-Cryst Solids 107(1):35–40. https://doi.org/10.1016/0022-3093(88)90089-0

    Article  Google Scholar 

  20. Boonstra AH, Bernards TNM (1989) Hydrolysis condensation-reactions in the acid step of a 2-step silica sol-gel process, investigated with Si-29 NMR at −75 °C. J Non-Cryst Solids 108(3):249–259. https://doi.org/10.1016/0022-3093(89)90295-0

    Article  Google Scholar 

  21. Mazur M, Mlynarik V, Valko M, Pelikan P (2000) The time evolution of the sol-gel process: Si-29 NMR study of the hydrolysis and condensation reactions of tetraethoxysilane. Appl Magn Reson 18(2):187–197. https://doi.org/10.1007/Bf03162110

    Article  Google Scholar 

  22. Fyfe CA, Aroca PP (1997) A kinetic analysis of the initial stages of the sol-gel reactions of methyltriethoxysilane (MTES) and a mixed MTES/tetraethoxysilane system by high-resolution Si-29 NMR spectroscopy. J Phys Chem B 101(46):9504–9509. https://doi.org/10.1021/jp971559x

    Article  Google Scholar 

  23. Houston PL (2001) Chemical Kinetics and Reaction Dynamics, 1st edn. McGraw-Hill, New York, NY, USA

    Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato ML, X., Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Revision C.01 edn., Wallingford CT, USA

  25. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J Chem Phys 108(2):664–675. https://doi.org/10.1063/1.475428

    Article  Google Scholar 

  26. Cioslowski J (1989) A new population analysis based on atomic polar tensors. J Am Chem Soc 111(22):8333–8336. https://doi.org/10.1021/Ja00204a001

    Article  Google Scholar 

  27. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926. https://doi.org/10.1021/Cr00088a005

    Article  Google Scholar 

  28. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  29. Becke AD (1993) Density-functional thermochemistry .3. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  Google Scholar 

  30. Mclean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations .1. 2nd Row Atoms, Z=11–18. J Chem Phys 72(10):5639–5648. https://doi.org/10.1063/1.438980

    Article  Google Scholar 

  31. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112(23):8251–8260. https://doi.org/10.1021/ja00179a005

    Article  Google Scholar 

  32. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104(14):5497–5509. https://doi.org/10.1063/1.471789

    Article  Google Scholar 

  33. Hook RJ (1996) A Si-29 NMR study of the sol-gel polymerisation rates of substituted ethoxysilanes. J Non-Cryst Solids 195(1-2):1–15. https://doi.org/10.1016/0022-3093(95)00508-0

    Article  Google Scholar 

  34. Malier L, Devreux F, Chaput F, Boilot JP (1992) Silicon-29 nuclear magnetic resonance of sol-gel transformation in first steps and after gel time. In: Hench LL, West JK (eds) Chemical Processing of Advanced Materials. John Wiley and Sons, Inc, New York, pp 59–67

  35. Colby MW, Osaka A, Mackenzie JD (1988) Temperature-dependence of the gelation of silicon alkoxides. J Non-Cryst Solids 99(1):129–139. https://doi.org/10.1016/0022-3093(88)90465-6

    Article  Google Scholar 

  36. Yang H, Ding Z, Jiang Z, Xiaoping X (1989) Sol-gel process kinetics for Si(OEt)4. J Non-Cryst Solids 112(1-3):449–453

    Article  Google Scholar 

  37. Chojnowski J, Cypryk M, Kazmierski K, Rozga K (1990) The reactivity of monomeric silanol intermediates in the hydrolytic polycondensation of tetraethoxysilane in acidic media. J Non-Cryst Solids 125(1-2):40–49. https://doi.org/10.1016/0022-3093(90)90321-C

    Article  Google Scholar 

  38. Aelion R, Loebel A, Eirich F (1950) Hydrolysis of ethyl silicate. J Am Chem Soc 72(12):5705–5712. https://doi.org/10.1021/Ja01168a090

    Article  Google Scholar 

  39. Devreux F, Boilot JP, Chaput F, Lecomte A (1990) Si-29 NMR-study of silicon alkoxides–from the condensation kinetics in solution to the determination of the fractal dimension in aerogels In: Brinker CJ, Zelinsky BJ, Ulrich DR, Clark DE (eds) Better Ceramics through Chemistry IV. Materials Research Society, San Francisco, pp 211–216

  40. Devreux F, Boilot JP, Chaput F, Lecomte A (1990) Sol-gel condensation of rapidly hydrolyzed silicon alkoxides - a joint Si-29 NMR and small-angle X-ray-scattering study. Phys Rev A 41(12):6901–6909. https://doi.org/10.1103/PhysRevA.41.6901

    Article  Google Scholar 

  41. Cheng XL, Chen DR, Liu YJ (2012) Mechanisms of silicon alkoxide hydrolysis-oligomerization reactions: a DFT investigation. Chemphyschem 13(9):2392–2404. https://doi.org/10.1002/cphc.201200115

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “Ministerio de Economía, Industria y Competitividad” (MAT2016-78155-C2-2-R). PM is thankful to the “Departamento de Industria y Tecnología, Comercio y Trabajo” of Navarre Government for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Echeverría.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • Hydrolysis reactions had a common pathway, independent of pH and temperature.

  • The system is described with six kinetic constants, six activation energies, and the equilibrium constant for the fourth hydrolysis

  • The activation energy for condensation from Si(OH)4 to form ≡Si─O─Si≡ was ca. 10 kJ mol−1 higher than the largest activation energy in the hydrolytic reactions.

  • The pH-independent rate constants at 298.2 K increased as the hydrolysis progresses.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverría, J.C., Moriones, P., Arzamendi, G. et al. Kinetics of the acid-catalyzed hydrolysis of tetraethoxysilane (TEOS) by 29Si NMR spectroscopy and mathematical modeling. J Sol-Gel Sci Technol 86, 316–328 (2018). https://doi.org/10.1007/s10971-018-4637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4637-7

Keywords

Navigation