Skip to main content
Log in

Single-step synthesis of disiloxanetetraols

  • Brief Communication: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Disiloxanetetraols are very useful synthetic precursors for various siloxane compounds. In addition, they are effective starting materials in sol–gel chemistry for the fabrication of well-defined structures. We herein described a facile single-step synthesis of disiloxanetetraols ([RSi(OH)2]2O) with various substituents (R = Pr, i-Pr, i-Bu, cyclopentyl, hexyl, cyclohexyl, Ph) by hydrolytic condensation of trichlorosilanes, where the reaction was quenched at an early stage. [PrSi(OH)2]2O has the smallest substituents among the disiloxanetetraols reported so far. The results of X-ray crystallography of [C5H9Si(OH)2]2O showed a supramolecular sheet structure formed by intermolecular hydrogen bonding. We also found that disiloxanetetraols and cyclotetrasiloxanetetraols with isobutyl groups can be synthesized from isobutyltrichlorosilane by simply changing the quenching time and reaction temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2

References

  1. Lickiss PD (1995) Adv Inorg Chem 42:147–262

    Article  Google Scholar 

  2. Unno M, Alias SB, Arai M, Takada K, Tanaka R, Matsumoto H (1999) Appl Organomet Chem 13:303–310

    Article  Google Scholar 

  3. Unno M, Alias SB, Saito H, Matsumoto H (1996) Organometallics 15:2413–2414

    Article  Google Scholar 

  4. Unno M, Imai Y, Matsumoto H (2003) Silicon Chem 2:175–178

    Article  Google Scholar 

  5. Zhang ZX, Hao J, Xie P, Zhang X, Han CC, Zhang R (2008) Chem Mater 20:1322–1330

    Article  Google Scholar 

  6. Chandrasekhar V, Thirumoorthi R (2009) Inorg Chem 48:6236–6241

    Article  Google Scholar 

  7. Andrianov KA, Izmailov BA, Petukhova ND (1976) Zh Obshch Khim 46:599–601

    Google Scholar 

  8. Hurkes N, Bruhn C, Celaj F, Piestschnig R (2014) Organometallics 33:7299–7306

    Article  Google Scholar 

  9. Brown Jr JF, Vogt Jr LH (1965) J Am Chem Soc 87:4313–4137

    Article  Google Scholar 

  10. Brown Jr JF, Slusarczuk GM (1964) J Org Chem 29:2809–2810

    Article  Google Scholar 

  11. Seto I, Gunji T, Kumagai K, Arimitsu K, Abe Y (2003) Bull Chem Soc Jpn 76:1983–1987

    Article  Google Scholar 

  12. Suyama K, Nakatsuka T, Gunji T, Abe Y (2007) J Organomet Chem 692:2028–2035

    Article  Google Scholar 

  13. Unno M, Tanaka T, Matsumoto H (2003) J Organomet Chem 686:175–182

    Article  Google Scholar 

  14. Lickiss PD, Lister SA, Redhouse AD, Wisener PD (1991) Chem Commun 173–174

  15. Pescarmona PP, Van der waal JC, Maschmeyer T (2004) Chem Eur J 10:1657–1665

    Article  Google Scholar 

  16. Kim JH, Han JS, Lim WC, Yoo BR (2007) J Ind Eng Chem 13:480

    Google Scholar 

  17. Toulokhonova I, Zhao R, Kozee M, West R (2001) Main Group Met Chem 24:737–744

    Google Scholar 

  18. Rulkens R, Coles MP, Tilley TD (2000) J Chem Soc Dalton Trans 627-628

  19. Murugavel R, Bottcher P, Voigt A, Walawalker M. G, Roesky H. W, Parisini E, Teichert M, Noltemeyer M (1996) Chem Commun 2417-2418

  20. Rickard CEF, Roper WR, Salter DM, Wright LJ (1992) J Am Chem Soc 114:9682–9683

    Article  Google Scholar 

  21. Ren Z, Sun D, Li H, Fu Q, Ma D, Zhang J, Yan S (2012) Chem Eur J 18:4115–4123

    Article  Google Scholar 

  22. Ren Z, Chen Z, Fu W, Zhang R, Shen F, Wang F, Ma Y, Yan S (2011) J Mater Chem 21:11306–11311

    Article  Google Scholar 

  23. Perruchas S, Desboeufs N, Maron S, Goff XFL, Fagues A, Garcia A, Gacoin T, Boilot JP (2012) Inorg Chem 51:794–798

    Article  Google Scholar 

  24. Yoshizawa M, Kusukawa T, Fujita M, Sakamoto S, Yamaguchi K (2001) J Am Chem Soc 123:10454–10459

    Article  Google Scholar 

  25. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) Sir97: a new tool for crystal structure determination and refinement. J Appl Crystallogr 32:115–119

    Article  Google Scholar 

  26. Sheldrick GM (1997) SHELXS-97 and SHELXL-97, Program for the Refinement of Crystal Structures. University of Göttingen, Göttingen, Germany

    Google Scholar 

  27. Yamamoto S, Yasuda N, Ueyama A, Adachi H, Ishikawa M (2004) Macromolecules 37:2775–2778

    Article  Google Scholar 

  28. Ito R, Kakihana Y, Kawakami Y (2009) Chem Lett 2009(38):364–365

    Article  Google Scholar 

  29. Unno M, Suto A, Takada K, Matsumoto H (2000) Bull Chem Soc Jpn 73:215-220

  30. Feher FJ, Schwab JJ, Soulivong D, Ziller JW (1997) Main Group Chem 2:123–132

    Article  Google Scholar 

  31. Abe Y, Abe K, Watanabe M, Gunji T (1999) Chem Lett 28:259–260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Unno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • Facile single-step synthesis of disiloxanetetraols ([RSi(OH)2]2O) with various substituents were realized.

  • Target compounds were obtained from substituted trichlorosilanes by the reaction in acetone-water at 0 °C for 1 hour.

  • No purification was necessary except work up, concentration, and washing by a solvent.

  • With this method, [PrSi(OH)2]2O that is the disiloxanetetraols with the smallest substituents was synthesized.

  • Crystallographic analysis for cyclopentyl-substituted [C5H11Si(OH)2]2O was performed and a sheet-like supramolecular structure was revealed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, H., Takeda, N. & Unno, M. Single-step synthesis of disiloxanetetraols. J Sol-Gel Sci Technol 89, 37–44 (2019). https://doi.org/10.1007/s10971-018-4635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4635-9

Keywords

Navigation