Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 170–174 | Cite as

Ferroelectric BiFeO3 nanodots formed in non-crystallized BiFeO3 thin-films via a local heating process using a heated atomic force microscope tip

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • 28 Downloads

Abstract

A BiFeO3 thin-film was prepared from a solution by deposition on a Pt/TiO2/SiO2/Si substrate via a spin coating process and was subsequently annealed at 300 °C for 1 h to afford a non-crystallized BiFeO3 thin-film. Locally crystallized BiFeO3 nanodots were formed in the non-crystallized BiFeO3 thin-film via a local crystallization process using an atomic force microscope tip heated to 550 °C. By controlling the local heating time, ferroelectric BiFeO3 nanodots with different diameters ranging from 65 to 120 nm were obtained. The ferroelectric properties of the BiFeO3 nanodots were further investigated by studying the local ferroelectric switching behaviors and local piezoelectric d33 hysteresis loops using a piezoresponse force microscope.

Keywords

BiFeO3 nanodots Local heating process Local crystallization process Atomic force microscopy Piezoresponse force microscopy Sol–gel BiFeO3 

Notes

Acknowledgements

This work was supported by the Korea Research Foundation Grant under contract no. 2015R1A2A2A05027951.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ghoneim MT, Hussain MM (2015) Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric. Appl Phys Lett 107:052904CrossRefGoogle Scholar
  2. 2.
    Kim W-H, Son JY, Shin Y-H, Jang HM (2014) Imprint control of nonvolatile shape memory with asymmetric ferroelectric multilayers. Chem Mat 26:6911–6914CrossRefGoogle Scholar
  3. 3.
    Lipatov A, Sharma P, Gruverman A, Sinitskii A (2015) Optoelectrical molybdenum disulfide (MoS2) ferroelectric memories. ACS Nano 9:8089–8098CrossRefGoogle Scholar
  4. 4.
    Scott JF (2007) Applications of modern ferroelectrics. Science 315:954–959CrossRefGoogle Scholar
  5. 5.
    Son JY, Ryu S, Park Y-C, Lim Y-T, Shin Y-S, Shin Y-H, Jang HM (2010) A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube. ACS Nano 4:7315–7320CrossRefGoogle Scholar
  6. 6.
    Dussan S, Kumar A, Scott JF, Priya S, Katiyar RS (2010) Room temperature multiferroic effects in superlattice nanocapacitors. Appl Phys Lett 97:252902CrossRefGoogle Scholar
  7. 7.
    Lee W, Han H, Lotnyk A, Schubert MA, Senz S, Alexe M, Hesse D, Baik S, Gosele U (2008) Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density. Nat Nano 3:402–407CrossRefGoogle Scholar
  8. 8.
    Son JY, Lee J-H, Song S, Shin Y-H, Jang HM (2013) Four-states multiferroic memory embodied using Mn-doped BaTiO3 nanorods. ACS Nano 7:5522–5529CrossRefGoogle Scholar
  9. 9.
    Chu M-W, Szafraniak I, Scholz R, Harnagea C, Hesse D, Alexe M, Gosele U (2004) Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat Mater 3:87–90CrossRefGoogle Scholar
  10. 10.
    Jung I, Son JY (2012) A nonvolatile memory device made of a graphene nanoribbon and a multiferroic BiFeO3 gate dielectric layer. Carbon N Y 50:3854–3858CrossRefGoogle Scholar
  11. 11.
    Jia C-L, Nagarajan V, He J-Q, Houben L, Zhao T, Ramesh R, Urban K, Waser R (2007) Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat Mater 6:64–69CrossRefGoogle Scholar
  12. 12.
    Seyidov MY, Coskun E, Sahin Y, Khamoev R, Suleymanov RA (2006) The effect of thermal annealing on impurity states in ferroelectric- semiconductor TlGaSe2 within the incommensurate phase. Semicond Sci Technol 21:171–174CrossRefGoogle Scholar
  13. 13.
    Hyuk Park M, Joon Kim H, Jin Kim Y, Lee W, Moon T, Seong Hwang C (2013) Evolution of phases and ferroelectric properties of thin Hf 0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl Phys Lett 102:242905Google Scholar
  14. 14.
    Hironori F, Yuko M, Masaru S (2006) Fabrication of self-assembled Au nanodots and their applications to ferroelectric nanocapacitors. Jpn J Appl Phys 45:7262–7264CrossRefGoogle Scholar
  15. 15.
    Yoo H, Bae C, Kim M, Hong S, No K, Kim Y, Shin H (2013) Visualization of three dimensional domain structures in ferroelectric PbTiO3 nanotubes. Appl Phys Lett 103:022902CrossRefGoogle Scholar
  16. 16.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) ‘Dip-pen’ nanolithography. Science 283:661–663CrossRefGoogle Scholar
  17. 17.
    Hyun J, Ahn SJ, Lee WK, Chilkoti A, Zauscher S (2002) Molecular recognition-mediated fabrication of protein nanostructures by dip-pen lithography. Nano Lett 2:1203–1207CrossRefGoogle Scholar
  18. 18.
    Wang Y, Jiang QH, He HC, Nan CW (2006) Multiferroic BiFeO3 thin films prepared via a simple sol-gel method. Appl Phys Lett 88:142503–142501CrossRefGoogle Scholar
  19. 19.
    Seo J, Ahn Y, Kim W-H, Son JY (2016) Local ferroelectric responses of epitaxial PbTiO3 thin films to heated atomic force microscopy. Mater Lett 168:134–137CrossRefGoogle Scholar
  20. 20.
    Yang J-K, Kim WS, Park H-H (2001) Effect of grain size of Pb(Zr0.4Ti0.6)O3 sol-gel derived thin films on the ferroelectric properties. Appl Surf Sci 169(70):544–548CrossRefGoogle Scholar
  21. 21.
    Qiao L, Bi X (2009) Microstructure and grain size dependence of ferroelectric properties of BaTiO3 thin films on LaNiO3 buffered Si. J Eur Ceram Soc 29:1995–2001CrossRefGoogle Scholar
  22. 22.
    Kim W-H, Son JY (2013) The effects of La substitution on ferroelectric domain structure and multiferroic properties of epitaxially grown BiFeO3 thin films. Appl Phys Lett 103:132907CrossRefGoogle Scholar
  23. 23.
    Bark CW, Ryu S, Koo YM, Jang HM, Youn HS (2007) Electric-field-induced structural modulation of epitaxial BiFeO3 multiferroic thin films as studied using x-ray microdiffraction. Appl Phys Lett 90:022902CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Physics, College of Applied Science and Institute of Natural ScienceKyung Hee UniversitySuwonKorea

Personalised recommendations