Skip to main content
Log in

Correlation between oxygen vacancies and room-temperature ferromagnetism in Ti0.94Co0.03La0.03O2 nanoparticles influenced by different post annealing treatment

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The correlation between oxygen vacancies and room-temperature ferromagnetism in Ti0.94Co0.03La0.03O2 nanoparticles is investigated by treating the samples in different post annealing process. Ti0.94Co0.03La0.03O2 nanoparticles were prepared via sol–gel method followed by post annealing under vacuum or in air. The samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectroscopy, Raman spectra, and magnetic measurement techniques, respectively. The characterizations confirmed the incorporation of substituting Co and La atoms into anatase TiO2 lattice. More oxygen vacancies were introduced into Ti0.94Co0.03La0.03O2 when annealed under vacuum. The vacuum annealed sample exhibits typical ferromagnetic behavior with well-defined hysteresis loops and a saturation magnetization, while the air annealed sample displays feebler ferromagnetism, which is transformed to paramagnetism afterwards when further annealed in air. All measurements strongly support the decisive role of oxygen vacancies in inducing room-temperature ferromagnetism in Ti0.94Co0.03La0.03O2, which can be explained using the bound magnetic polaron model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Navarro AMM, Torres CER, Bilovo V, Cabrera AF, Errico LA, Weissmann M (2014) J Appl Phys 115:223908

    Article  Google Scholar 

  2. Sellers MCK, Seebauer EG (2011) Appl Phys A 104:583–586

    Article  Google Scholar 

  3. Srinivas K, Venugopal Reddy P (2014) J Supercond Nov Magn 27:2521–2538

    Article  Google Scholar 

  4. Zhang H, Liu YC, Wu YB, Ruan KB (2015) J Nanosci Nanotechno 15:2531–2536

    Article  Google Scholar 

  5. Song HJ, You SS, Chen T, Jia XH (2015) J Mater Sci-Mater Electron 26:8442–8450

    Article  Google Scholar 

  6. Zhang JJ, Wang XY, Wang JM, Wang J, Ji ZJ (2016) Chem Phys Lett 643:53–60

    Article  Google Scholar 

  7. Bolokang AS, Cummings FR, Dhonge BP, Abdallah HMI, Moyo T, Swart HC, Arendse CJ, Muller TFG, Motaung DE (2015) Appl Surf Sci 311:362–372

    Article  Google Scholar 

  8. Kanmani SS, Ramachandran K (2012) Renew Energ 43:149–156

    Article  Google Scholar 

  9. Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Science 5505:854–856

    Article  Google Scholar 

  10. Stella C, Prabhakar D, Prabhu M, Soundararajan N, Ramachandran K (2016) J Mater Sci-Mater Electron 27:1636–1644

    Article  Google Scholar 

  11. Susmita P, Biswajit C, Amarjyoti C, Choudhury A (2014) J Alloy Compd 601:201–206

    Article  Google Scholar 

  12. Zhang H, Xu Y, Yang WB, Lin R (2017) J Electroceram 38:104–110

    Article  Google Scholar 

  13. Zhou ZP, Wang HY, Yang ZX (2016) J Alloy Compd 657:372–378

    Article  Google Scholar 

  14. Semisalova AS, Mikhailovsky YO, Smekhova A, Orlov AF, Perov NS, Gańshina EA, Lashkul A, Lähderanta E, Potzger K, Yildirim O, Aronzon B, Granovsky AB (2015) J Supercond Nov Magn 28:805–811

    Article  Google Scholar 

  15. Tian JJ, Gao HP, Deng HM, Sun L, Kong H, Yang PX, Chu JH (2013) J Alloy Compd 581:318–323

    Article  Google Scholar 

  16. Tseng LT, Luo X, Li S, Yi JB (2016) J Alloy Compd 687:294–299

    Article  Google Scholar 

  17. Zhang H, Xu Y, Ouyang XH, Ni YH (2017) J Sol-Gel Sci Technol 83:365–374

    Article  Google Scholar 

  18. Choudhury B, Choudhury A (2013) J Appl Phys 114:203906

    Article  Google Scholar 

  19. Gómez-Polo C, Larumbe S, Monge M (2014) J Alloy Compd 612:450–455

    Article  Google Scholar 

  20. Zhang H, Ouyang XH, Yang B, Lutes R, Ni YH (2018) Ceram Int 44:6362–6369

    Article  Google Scholar 

  21. Santara B, Pal B, Giri PK (2011) J Appl Phys 110:114322

    Article  Google Scholar 

  22. Mohanty P, Mishra NC, Choudhary RJ, Banerjee A, Shripathi T, Lalla NP, Annapoorni S, Chandana R (2012) J Phys D: Appl Phys 45:325301

    Article  Google Scholar 

  23. Sharma S, Chaudhary S, Kashyap SC (2011) J Supercond Nov Magn 24:839–843

    Article  Google Scholar 

  24. Hu E, Molnar S, Stampe PA, Kennedy RJ, Xin Y (2008) Appl Phys Lett 92:012114

    Article  Google Scholar 

  25. Xu J, Shi S, Li L, Zhang X, Wang Y, Chen X, Wang J, Lv L, Zhang F, Zhong W (2010) J Appl Phys 107:053910

    Article  Google Scholar 

  26. Tian ZM, Yuan SL, Wang YQ, He JH, Yin SY, Liu KL, Yuan SJ, Liu L (2008) J Phys D: Appl Phys 41:055006

    Article  Google Scholar 

  27. Quilty JW, Shibata A, Son JY, Takubo K, Mizokawa T, Toyosaki H, Fukumura T, Kawasaki M (2006) Phys Rev Lett 96:027202

    Article  Google Scholar 

  28. Lin YB, Yang YM, Zhuang B, Huang SL, Wu LP, Huang ZG, Zhang FM, Du YW (2008) J Phys D, Appl Phys 41:195007

    Article  Google Scholar 

  29. Mi WB, Jiang EY, Bai HL (2009) J Magn Magn Mater 321:2472–2476

    Article  Google Scholar 

  30. Li XY, Xiao JR, Wang ZY, Li SW (2012) Mat Sci Eng B 177:869–872

    Article  Google Scholar 

  31. Li XY, Wu SX, Hu P, Xing XJ, Liu YJ, Yu YP, Yang M, Lu JQ, Li SW, Liu W (2009) J Appl Phys 106:043913

    Article  Google Scholar 

  32. Mo SD, Ching WY (1995) Phys Rev B 51:13023–13032

    Article  Google Scholar 

  33. Choudhury B, Choudhury A (2013) J Lumin 136:339–346

    Article  Google Scholar 

  34. Liu J, Li J, Sedhain A, Lin J, Jiang H (2008) J Phys Chem C 112:17127–17132

    Article  Google Scholar 

  35. Lei Y, Zhang L, Meng G, Li G, Zhang X, Liang C, Chen W, Wang S (2001) Appl Phys Lett 78:1125–1127

    Article  Google Scholar 

  36. Choudhury B, Dey M, Choudhury A (2014) Appl Nanosci 4:499–506

    Article  Google Scholar 

  37. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646–16654

    Article  Google Scholar 

  38. Pereira A, Filho P, Acun J, Brandt IS, Pasa AA, Zanatta AR, Vilcarromero J, Beltran A, da Silva J (2012) J Appl Phys 111:113513

    Article  Google Scholar 

  39. Patel SKS, Kurian S, Gajbhiye NS (2012) AIP Adv 2:012107

    Article  Google Scholar 

  40. Wu TS, Sun HY, Hou X, Liu LH, Zhang HM, Zhang JJ (2014) Micro Mesopor Mat 190:63–66

    Article  Google Scholar 

  41. Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ (2006) Sol Energy Mater Sol Cells 90:1773–1787

    Article  Google Scholar 

  42. Nair PB, Justinvictor VB, Daniel GP, Joy K, Ramakrishnan V, Kumar DD, Thomas PV (2014) Thin Solid Films 550:121–127

    Article  Google Scholar 

  43. Beltrán JJ, Barrero CA, Punnoose A (2015) Phys Chem Chem Phys 17:15284–15296

    Article  Google Scholar 

  44. Coey JMD, Douvalis AP, Fitzgerald CB, Venkatesan M (2004) Appl Phys Lett 84:1332–1334

    Article  Google Scholar 

  45. Patel SKS, Gajbhiye NS (2011) Solid State Commun 151:1500–1503

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Fund of Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials (No. QMNEM1610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • Ti0.94Co0.03La0.03O2 samples were prepared by sol–gel method and annealed in air or vacuum.

  • The room-temperature ferromagnetism varies with different post annealing treatment

  • Oxygen vacancies play the decisive role in inducing room-temperature ferromagnetism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chen, M., Wang, Y. et al. Correlation between oxygen vacancies and room-temperature ferromagnetism in Ti0.94Co0.03La0.03O2 nanoparticles influenced by different post annealing treatment. J Sol-Gel Sci Technol 86, 162–169 (2018). https://doi.org/10.1007/s10971-018-4625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4625-y

Keywords

Navigation