Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 162–169 | Cite as

Correlation between oxygen vacancies and room-temperature ferromagnetism in Ti0.94Co0.03La0.03O2 nanoparticles influenced by different post annealing treatment

  • Hong Zhang
  • Meixiang Chen
  • Yuzhu Wang
  • Yibing Wu
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications


The correlation between oxygen vacancies and room-temperature ferromagnetism in Ti0.94Co0.03La0.03O2 nanoparticles is investigated by treating the samples in different post annealing process. Ti0.94Co0.03La0.03O2 nanoparticles were prepared via sol–gel method followed by post annealing under vacuum or in air. The samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectroscopy, Raman spectra, and magnetic measurement techniques, respectively. The characterizations confirmed the incorporation of substituting Co and La atoms into anatase TiO2 lattice. More oxygen vacancies were introduced into Ti0.94Co0.03La0.03O2 when annealed under vacuum. The vacuum annealed sample exhibits typical ferromagnetic behavior with well-defined hysteresis loops and a saturation magnetization, while the air annealed sample displays feebler ferromagnetism, which is transformed to paramagnetism afterwards when further annealed in air. All measurements strongly support the decisive role of oxygen vacancies in inducing room-temperature ferromagnetism in Ti0.94Co0.03La0.03O2, which can be explained using the bound magnetic polaron model.


Diluted magnetic semiconductors TiO2 Ferromagnetism Oxygen vacancy Annealing treatment 



This work was supported by the Open Fund of Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials (No. QMNEM1610).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Navarro AMM, Torres CER, Bilovo V, Cabrera AF, Errico LA, Weissmann M (2014) J Appl Phys 115:223908CrossRefGoogle Scholar
  2. 2.
    Sellers MCK, Seebauer EG (2011) Appl Phys A 104:583–586CrossRefGoogle Scholar
  3. 3.
    Srinivas K, Venugopal Reddy P (2014) J Supercond Nov Magn 27:2521–2538CrossRefGoogle Scholar
  4. 4.
    Zhang H, Liu YC, Wu YB, Ruan KB (2015) J Nanosci Nanotechno 15:2531–2536CrossRefGoogle Scholar
  5. 5.
    Song HJ, You SS, Chen T, Jia XH (2015) J Mater Sci-Mater Electron 26:8442–8450CrossRefGoogle Scholar
  6. 6.
    Zhang JJ, Wang XY, Wang JM, Wang J, Ji ZJ (2016) Chem Phys Lett 643:53–60CrossRefGoogle Scholar
  7. 7.
    Bolokang AS, Cummings FR, Dhonge BP, Abdallah HMI, Moyo T, Swart HC, Arendse CJ, Muller TFG, Motaung DE (2015) Appl Surf Sci 311:362–372CrossRefGoogle Scholar
  8. 8.
    Kanmani SS, Ramachandran K (2012) Renew Energ 43:149–156CrossRefGoogle Scholar
  9. 9.
    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Science 5505:854–856CrossRefGoogle Scholar
  10. 10.
    Stella C, Prabhakar D, Prabhu M, Soundararajan N, Ramachandran K (2016) J Mater Sci-Mater Electron 27:1636–1644CrossRefGoogle Scholar
  11. 11.
    Susmita P, Biswajit C, Amarjyoti C, Choudhury A (2014) J Alloy Compd 601:201–206CrossRefGoogle Scholar
  12. 12.
    Zhang H, Xu Y, Yang WB, Lin R (2017) J Electroceram 38:104–110CrossRefGoogle Scholar
  13. 13.
    Zhou ZP, Wang HY, Yang ZX (2016) J Alloy Compd 657:372–378CrossRefGoogle Scholar
  14. 14.
    Semisalova AS, Mikhailovsky YO, Smekhova A, Orlov AF, Perov NS, Gańshina EA, Lashkul A, Lähderanta E, Potzger K, Yildirim O, Aronzon B, Granovsky AB (2015) J Supercond Nov Magn 28:805–811CrossRefGoogle Scholar
  15. 15.
    Tian JJ, Gao HP, Deng HM, Sun L, Kong H, Yang PX, Chu JH (2013) J Alloy Compd 581:318–323CrossRefGoogle Scholar
  16. 16.
    Tseng LT, Luo X, Li S, Yi JB (2016) J Alloy Compd 687:294–299CrossRefGoogle Scholar
  17. 17.
    Zhang H, Xu Y, Ouyang XH, Ni YH (2017) J Sol-Gel Sci Technol 83:365–374CrossRefGoogle Scholar
  18. 18.
    Choudhury B, Choudhury A (2013) J Appl Phys 114:203906CrossRefGoogle Scholar
  19. 19.
    Gómez-Polo C, Larumbe S, Monge M (2014) J Alloy Compd 612:450–455CrossRefGoogle Scholar
  20. 20.
    Zhang H, Ouyang XH, Yang B, Lutes R, Ni YH (2018) Ceram Int 44:6362–6369CrossRefGoogle Scholar
  21. 21.
    Santara B, Pal B, Giri PK (2011) J Appl Phys 110:114322CrossRefGoogle Scholar
  22. 22.
    Mohanty P, Mishra NC, Choudhary RJ, Banerjee A, Shripathi T, Lalla NP, Annapoorni S, Chandana R (2012) J Phys D: Appl Phys 45:325301CrossRefGoogle Scholar
  23. 23.
    Sharma S, Chaudhary S, Kashyap SC (2011) J Supercond Nov Magn 24:839–843CrossRefGoogle Scholar
  24. 24.
    Hu E, Molnar S, Stampe PA, Kennedy RJ, Xin Y (2008) Appl Phys Lett 92:012114CrossRefGoogle Scholar
  25. 25.
    Xu J, Shi S, Li L, Zhang X, Wang Y, Chen X, Wang J, Lv L, Zhang F, Zhong W (2010) J Appl Phys 107:053910CrossRefGoogle Scholar
  26. 26.
    Tian ZM, Yuan SL, Wang YQ, He JH, Yin SY, Liu KL, Yuan SJ, Liu L (2008) J Phys D: Appl Phys 41:055006CrossRefGoogle Scholar
  27. 27.
    Quilty JW, Shibata A, Son JY, Takubo K, Mizokawa T, Toyosaki H, Fukumura T, Kawasaki M (2006) Phys Rev Lett 96:027202CrossRefGoogle Scholar
  28. 28.
    Lin YB, Yang YM, Zhuang B, Huang SL, Wu LP, Huang ZG, Zhang FM, Du YW (2008) J Phys D, Appl Phys 41:195007CrossRefGoogle Scholar
  29. 29.
    Mi WB, Jiang EY, Bai HL (2009) J Magn Magn Mater 321:2472–2476CrossRefGoogle Scholar
  30. 30.
    Li XY, Xiao JR, Wang ZY, Li SW (2012) Mat Sci Eng B 177:869–872CrossRefGoogle Scholar
  31. 31.
    Li XY, Wu SX, Hu P, Xing XJ, Liu YJ, Yu YP, Yang M, Lu JQ, Li SW, Liu W (2009) J Appl Phys 106:043913CrossRefGoogle Scholar
  32. 32.
    Mo SD, Ching WY (1995) Phys Rev B 51:13023–13032CrossRefGoogle Scholar
  33. 33.
    Choudhury B, Choudhury A (2013) J Lumin 136:339–346CrossRefGoogle Scholar
  34. 34.
    Liu J, Li J, Sedhain A, Lin J, Jiang H (2008) J Phys Chem C 112:17127–17132CrossRefGoogle Scholar
  35. 35.
    Lei Y, Zhang L, Meng G, Li G, Zhang X, Liang C, Chen W, Wang S (2001) Appl Phys Lett 78:1125–1127CrossRefGoogle Scholar
  36. 36.
    Choudhury B, Dey M, Choudhury A (2014) Appl Nanosci 4:499–506CrossRefGoogle Scholar
  37. 37.
    Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646–16654CrossRefGoogle Scholar
  38. 38.
    Pereira A, Filho P, Acun J, Brandt IS, Pasa AA, Zanatta AR, Vilcarromero J, Beltran A, da Silva J (2012) J Appl Phys 111:113513CrossRefGoogle Scholar
  39. 39.
    Patel SKS, Kurian S, Gajbhiye NS (2012) AIP Adv 2:012107CrossRefGoogle Scholar
  40. 40.
    Wu TS, Sun HY, Hou X, Liu LH, Zhang HM, Zhang JJ (2014) Micro Mesopor Mat 190:63–66CrossRefGoogle Scholar
  41. 41.
    Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ (2006) Sol Energy Mater Sol Cells 90:1773–1787CrossRefGoogle Scholar
  42. 42.
    Nair PB, Justinvictor VB, Daniel GP, Joy K, Ramakrishnan V, Kumar DD, Thomas PV (2014) Thin Solid Films 550:121–127CrossRefGoogle Scholar
  43. 43.
    Beltrán JJ, Barrero CA, Punnoose A (2015) Phys Chem Chem Phys 17:15284–15296CrossRefGoogle Scholar
  44. 44.
    Coey JMD, Douvalis AP, Fitzgerald CB, Venkatesan M (2004) Appl Phys Lett 84:1332–1334CrossRefGoogle Scholar
  45. 45.
    Patel SKS, Gajbhiye NS (2011) Solid State Commun 151:1500–1503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations