Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 151–161 | Cite as

Sol-gel synthesis of ZnO/Zn2-xFexTiO4 powders: structural properties, electrical conductivity and dielectric behavior

  • Izabella Dascalu
  • Cristian Hornoiu
  • Jose Maria Calderon-Moreno
  • Madalin Enache
  • Daniela Culita
  • Simona Somacescu
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • 70 Downloads

Abstract

The aim of this work was an investigation of structural and electrical properties of ZnO/Zn2-xFexTiO4 (x = 0.7, 1, 1.4) powders. The compounds obtained by sol-gel method are characterized by several techniques: X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), electrical and dielectrical measurements. The XRD, SEM and XPS analysis confirmed the formation of ZnFeTiO4 inverse spinel structure. The electrical and dielectrical properties of ZnO/Zn2-xFexTiO4 (x = 0.7, 1, 1.4) were measured by impedance spectroscopy, revealing a decrease in the electrical conductivity and the dielectric constant with Fe content.

Keywords

Sol-gel ZnO/ZnFeTiO4 dielectric constant AC conductivity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4623_MOESM1_ESM.docx (19 kb)
Supplementary Information(DOCX 18 kb)

References

  1. 1.
    Park JY, Choi S-W, Lee J-W, Lee C, Kim SS (2009) Synthesis and gas sensing properties of TiO2–ZnO core-shell nanofibers. J Am Ceram Soc 92(11):2551–2554.  https://doi.org/10.1111/j.1551-2916.2009.03270.x CrossRefGoogle Scholar
  2. 2.
    Chen H, Liu Y, Xie C, Wu J, Zeng D, Liao Y (2012) A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceram Int 38(1):503–509.  https://doi.org/10.1016/j.ceramint.2011.07.035 CrossRefGoogle Scholar
  3. 3.
    Law M, Greene LE, Radenovic A, Kuykendall T, Liphardt J, Yang P (2006) ZnO−Al2O3 and ZnO−TiO2 core−shell nanowire dye-sensitized solar cells. J Phys Chem B 110(45):22652–22663.  https://doi.org/10.1021/jp0648644 CrossRefGoogle Scholar
  4. 4.
    Marimuthu T, Anandhan N, Thangamuthu R, Mummoorthi M, Ravi G (2016) Synthesis of ZnO nanowire arrays on ZnOTiO2 mixed oxide seed layer for dye sensitized solar cell applications. J Alloy Compd 677(Supplement C):211–218.  https://doi.org/10.1016/j.jallcom.2016.03.219 CrossRefGoogle Scholar
  5. 5.
    İkizler B, Peker SM (2016) Synthesis of TiO2 coated ZnO nanorod arrays and their stability in photocatalytic flow reactors. Thin Solid Films 605(Supplement C):232–242.  https://doi.org/10.1016/j.tsf.2015.11.083 CrossRefGoogle Scholar
  6. 6.
    Nations S, Wages M, Cañas JE, Maul J, Theodorakis C, Cobb GP (2011) Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83(8):1053–1061.  https://doi.org/10.1016/j.chemosphere.2011.01.061 CrossRefGoogle Scholar
  7. 7.
    Lim SK, Hwang S-H, Kim S, Park H (2011) Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sens Actuators B: Chem 160(1):94–98.  https://doi.org/10.1016/j.snb.2011.07.018 CrossRefGoogle Scholar
  8. 8.
    Eriksson J, Khranovskyy V, Söderlind F, Käll P-O, Yakimova R, Spetz AL (2009) ZnO nanoparticles or ZnO films: a comparison of the gas sensing capabilities. Sens Actuators B: Chem 137(1):94–102.  https://doi.org/10.1016/j.snb.2008.10.072 CrossRefGoogle Scholar
  9. 9.
    Chesler P, Hornoiu C, Mihaiu S, Vladut C, Calderon-Moreno JM, Anastasescu M, Moldovan C, Firtat B, Brasoveanu C, Muscalu G, Stan I, Gartner M (2016) Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide. Beilstein J Nanotechnol 7:2045–2056.  https://doi.org/10.3762/bjnano.7.195 CrossRefGoogle Scholar
  10. 10.
    Gerasimov GN, Gromov VF, Belysheva TV, Trakhtenberg LI (2013) Mechanism of the conductivity and sensor response of nanostructured In2O3+ZnO films. Russ J Phys Chem A 87(10):1731–1738.  https://doi.org/10.1134/s0036024413090082 CrossRefGoogle Scholar
  11. 11.
    Park S, Sun G-J, Jin C, Kim HW, Lee S, Lee C (2016) Synergistic effects of a combination of Cr2O3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors. ACS Appl Mater Interfaces 8(4):2805–2811.  https://doi.org/10.1021/acsami.5b11485 CrossRefGoogle Scholar
  12. 12.
    Rahman MM, Khan SB, Asiri AM, Alamry KA, Khan AAP, Khan A, Rub MA, Azum N (2013) Acetone sensor based on solvothermally prepared ZnO doped with Co3O4 nanorods. Microchim Acta 180(7):675–685.  https://doi.org/10.1007/s00604-013-0978-7 CrossRefGoogle Scholar
  13. 13.
    Liang F, Chen S, Xie W, Zou C (2018) The decoration of Nb-doped TiO2 microspheres by reduced graphene oxide for enhanced CO gas sensing. J Phys Chem Solids 114:195–200.  https://doi.org/10.1016/j.jpcs.2017.11.001 CrossRefGoogle Scholar
  14. 14.
    Tshabalala ZP, Motaung DE, Swart HC (2017) Structural transformation and enhanced gas sensing characteristics of TiO2 nanostructures induced by annealing. Physica B: Condensed Matter.  https://doi.org/10.1016/j.physb.2017.07.041
  15. 15.
    Krško O, Plecenik T, Moško M, Haidry AA, Ďurina P, Truchlý M, Grančič B, Gregor M, Roch T, Satrapinskyy L, Mošková A, Mikula M, Kúš P, Plecenik A (2015) Highly sensitive hydrogen semiconductor gas sensor operating at room temperature. Procedia Eng 120:618–622.  https://doi.org/10.1016/j.proeng.2015.08.748 CrossRefGoogle Scholar
  16. 16.
    Li Y, Zhao H, Ban H, Yang M (2017) Composites of Fe2O3 nanosheets with polyaniline: preparation, gas sensing properties and sensing mechanism. Sens Actuators B: Chem 245:34–43.  https://doi.org/10.1016/j.snb.2017.01.103 CrossRefGoogle Scholar
  17. 17.
    Giahi M, Saadat Niavol S, Taghavi H, Meskinfam M (2015) Synthesis and characterization of ZnO–TiO2 nanopowders doped with fe via sol-gel method and their application in photocatalytic degradation of anionic surfactant. Russ J Phys Chem A 89(13):2432–2437.  https://doi.org/10.1134/s0036024415130154 CrossRefGoogle Scholar
  18. 18.
    Avcı A, Eskizeybek V, Gülce H, Haspulat B, Şahin ÖS (2014) ZnO–TiO2 nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties. Appl Phys A 116(3):1119–1125.  https://doi.org/10.1007/s00339-013-8194-1
  19. 19.
    DullN FH, Rase DE (1960) Phase equilibria in the system ZnO–TiO2. J Am Ceram Soc 43(3):125–131.  https://doi.org/10.1111/j.1151-2916.1960.tb14326.x CrossRefGoogle Scholar
  20. 20.
    Ayed S, Abdelkefi H, Khemakhem H, Matoussi A (2016) Solid state synthesis and structural characterization of zinc titanates. J Alloy Compd 677(Supplement C):185–189.  https://doi.org/10.1016/j.jallcom.2016.03.244 CrossRefGoogle Scholar
  21. 21.
    Liu X, Zhao M, Gao F, Zhao L, Tian C (2008) Effects of WO3 additions on the phase structure and transition of zinc titanate ceramics. J Alloy Compd 450(1):440–445.  https://doi.org/10.1016/j.jallcom.2006.10.120 CrossRefGoogle Scholar
  22. 22.
    Jung JS, Kim YH, Gil SK, Kang DH (2009) Dielectric properties of zinc titanate thin films prepared by Rf magnetron sputtering. J Electroceram 23(2):272–276.  https://doi.org/10.1007/s10832-008-9423-4 CrossRefGoogle Scholar
  23. 23.
    Millard Roberta L, Peterson Ronald C, Hunter Brian K (1995) Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data. Am Mineralogist, 80.  https://doi.org/10.2138/am-1995-9-1003
  24. 24.
    Chaves AC, Lima SJG, Araújo RCMU, Maurera MAMA, Longo E, Pizani PS, Simões LGP, Soledade LEB, Souza AG, Santos IMGd (2006) Photoluminescence in disordered Zn2TiO4. J Solid State Chem 179(4):985–992.  https://doi.org/10.1016/j.jssc.2005.12.018 CrossRefGoogle Scholar
  25. 25.
    Li B, Yue Z, Li L, Zhou J, Gui Z (2002) Low-fired microwave dielectrics in ZnO–TiO2 ceramics doped with CuO and B2O3. J Mater Sci: Mater Electron 13(7):415–418.  https://doi.org/10.1023/a:1016044627750 Google Scholar
  26. 26.
    Savchuk GK, Letko AK (2013) Preparation and dielectric properties of microwave ceramics based on doped zinc titanates. Inorg Mater 49(7):733–739.  https://doi.org/10.1134/s0020168513070169 CrossRefGoogle Scholar
  27. 27.
    Kim HT, Byun JD, Kim Y (1998) Microstructure and microwave dielectric properties of modified zinc titanates (I). Mater Res Bull 33(6):963–973.  https://doi.org/10.1016/S0025-5408(98)00056-7 CrossRefGoogle Scholar
  28. 28.
    Siriwong C, Tamaekong N, Phanichphant S (2012) Characterization of single phase Pt-doped Zn2TiO4 nanoparticles synthesized by flame spray pyrolysis. Mater Lett 68(Supplement C):97–100.  https://doi.org/10.1016/j.matlet.2011.10.026 CrossRefGoogle Scholar
  29. 29.
    Hao S, Rankin RB, Johnson JK, Sholl DS (2011) Surface reactions of AsH3, H2Se, and H2S on the Zn2TiO4(010) surface. Surf Sci 605(7):818–823.  https://doi.org/10.1016/j.susc.2011.01.025 CrossRefGoogle Scholar
  30. 30.
    Bodade AB, Bende AM, Chaudhari GN (2008) Synthesis and characterization of CdO-doped nanocrystalline ZnO:TiO2-based H2S gas sensor. Vacuum 82(6):588–593.  https://doi.org/10.1016/j.vacuum.2007.08.015 CrossRefGoogle Scholar
  31. 31.
    Souza SC, Santos IMG, Silva MRS, Cassia-Santos MR, Soledade LEB, Souza AG, Lima SJG, Longo E (2005) Influence of pH on iron doped Zn2TiO4 pigments. J Therm Anal Calorim 79(2):451–454.  https://doi.org/10.1007/s10973-005-0083-1 CrossRefGoogle Scholar
  32. 32.
    Grigoryan RA, Grigoryan LA (2011) X-Ray diffraction study of multicomponent oxides in the Zn-2 (-) (x)(TiaZrb)(1-x)Fe2xO4 system. Inorg Mater 47(3):317–323.  https://doi.org/10.1134/s0020168511030101 CrossRefGoogle Scholar
  33. 33.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (IUPAC Recommendations 1984), Pure & Appl Chem 57:603–619.  https://doi.org/10.1351/pac198557040603
  34. 34.
    Abram EJ, Sinclair DC, West AR (2003) A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped Lanthanum Gallate. J Electroceram 10(3):165–177.  https://doi.org/10.1023/b:jecr.0000011215.56084.87 CrossRefGoogle Scholar
  35. 35.
    Dinesha ML, Prasanna GD, Naveen CS, Jayanna HS (2013) Structural and dielectric properties of Fe doped ZnO nanoparticles. Indian J Phys 87(2):147–153.  https://doi.org/10.1007/s12648-012-0182-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.”llie Murgulescu” Institute of Physical ChemistryRomanian AcademyBucharestRomania
  2. 2.Institute of BiologyRomanian AcademyBucharestRomania

Personalised recommendations