Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 468–478 | Cite as

Investigation of electrocatalytic activity of nanostructure Ce-doped MnO x sol–gel coating deposited on porous Ti membrane electrode

  • Di Zhang
  • Xiaoping Liang
  • Shanmin Yang
  • Zishang Chen
  • Huan Wang
  • Yu Feng
  • Hong Wang
  • Jianxin Li
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 91 Downloads

Abstract

Ce-doped MnOx/Ti electrocatalytic membrane electrodes were prepared by doping rare earth element Ce into manganese oxide (MnOx) via sol–gel method, and coated on the porous Ti substrate membrane electrode. In order to evaluate electrocatalytic activity of the Ce–MnOx/Ti electrode, a functional electrocatalytic membrane reactor (ECMR), which assembled a Ce–MnOx/Ti electrode as an anode and a stainless steel mesh as a cathode, has been employed for phenolic wastewater treatment. The results revealed that a new crystal form Ce2O3 appeared after doping Ce into the system, and the urchinlike morphology and smaller grain size of Ce–MnOx led the catalytic activity of the composite membrane electrode to improve. Moreover, the 25 mol% Ce–MnOx/Ti (C25MT) composite membrane electrode represented the best activity in the degradation of phenolic wastewater. During ECMR with C25MT operation under the conditions of 450 mg/L phenolic wastewater (500 mL), residence time of 5 min, pH of 1–13 and current density of 0.3–1.2 mA/cm2, the highest degradation efficiency of phenolic wastewater achieved in current density of 0.9 mA/cm2 and pH of 7, that is, the achieved remove rate of phenol, COD and TOC were 99.61, 93.12, and 84.23%, respectively. Finally, the effective reusability of C25MT composite membrane electrode was assessed, and a proposed reaction mechanism has been analyzed in the ECMR operation.

Keywords

Phenolic wastewater Ce-doped MnOx Sol–gel MnOx/Ti membrane electrode Electrocatalytic membrane reactor 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support by National Natural Science Foundation of China (21676200), the Program for Innovative Research Team in University of Ministry of Education of China (Grand no. IRT-17R80), National key research and development plan (2016YFC0400506).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gestel TV, Hauler F, Bram M, Meulenberg WA, Buchkremer HP (2014) Synthesis and characterization of hydrogen-selective sol–gel SiO2 membranes supported on ceramic and stainless steel supports. Sep Purif Technol 121(2):20–29CrossRefGoogle Scholar
  2. 2.
    Wang H, Wang H, Li J, Bin D, Yin Z, Kang J, He B (2014) An electrocatalytic reactor for the high selectivity production of sodium 2,2,3,3-tetrafluoropropionate from 2,2,3,3-tetrafluoro-1- propanol. Electrochim Acta 123:33–41CrossRefGoogle Scholar
  3. 3.
    Lin Y, Zou D, Chen X, Qiu M, Kameyama H, Fan Y (2015) Low temperature sintering preparation of high-permeability TiO2/Ti composite membrane via facile coating method. Appl Surf Sci 349:8–16CrossRefGoogle Scholar
  4. 4.
    Rodrigues LA, Campos TMB, Alvarez-Mendes MO, Coutinho ADR, Sakane KK, Thim GP (2012) Phenol removal from aqueous solution by carbon xerogel. J Sol–Gel Sci Technol 63(2):202–210CrossRefGoogle Scholar
  5. 5.
    Jiang SP, Chan SH (2004) Development of Ni/Y2O3-ZrO2 cermet anodes for solid oxide fuel cells. Mater Sci Technol 20(20):1109–1118CrossRefGoogle Scholar
  6. 6.
    Yin Y, Li X, Shu Y, Guo X, Bao H, Li W, Zhu Y, Li Y, Huang X (2017) Fabrication of electrophoretically deposited, self-assembled three-dimensional porous Al/CuO nanothermite films for highly enhanced energy output. Mater Chem Phys 194:182–187CrossRefGoogle Scholar
  7. 7.
    Ji Y, Liu J, Liu X, Yuen MMF, Fu XZ, Yang Y, Sun R, Wong CP (2017) 3D porous Cu@Cu2O films supported Pd nanoparticles for glucose electrocatalytic oxidation. Electrochim Acta 248:299–306CrossRefGoogle Scholar
  8. 8.
    Fang X, Yin Z, Wang H, Li J, Liang X, Kang J, He B (2015) Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor. J Catal 329:187–194CrossRefGoogle Scholar
  9. 9.
    ERARSLAN Y (2013) Wear performance of in-situ aluminum matrix composite after micro-arc oxidation. Trans Nonferrous Metal Soc 23(2):347–352CrossRefGoogle Scholar
  10. 10.
    Chen F, Yu P, Zhang Y (2017) Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy. J Alloy Compd 711:342–348CrossRefGoogle Scholar
  11. 11.
    Xue W, Wu X, Li X, Tian H (2006) Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte. J Alloy Compd 425(1):302–306CrossRefGoogle Scholar
  12. 12.
    Xu L, Li M, Xu W (2015) Preparation and characterization of Ti/SnO2-Sb electrode with copper nanorods for AR 73 removal. Electrochim Acta 166:64–72CrossRefGoogle Scholar
  13. 13.
    Buddee S, Wongnawa S (2015) Removal of dyes by photocatalytically active curcumin-sensitized amorphous TiO2 under visible light irradiation. J Sol–Gel Sci Technol 75(1):152–163CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Cheng X, Zheng C, Feng X, Qiu G, Tan W, Liu F (2011) Roles of manganese oxides in degradation of phenol under UV–Vis irradiation: adsorption, oxidation, and photocatalysis. J Environ Sci 23(11):1904–1910CrossRefGoogle Scholar
  15. 15.
    Bose VC, Biju V (2015) Structure, cation valence states and electrochemical properties of nanostructured Mn3O4. Mater Sci Semicond Process 35:1–9CrossRefGoogle Scholar
  16. 16.
    El-Deab MS, Ohsaka T (2007) Electrocatalysis by design: effect of the loading level of Au nanoparticles-MnOx nanoparticles binary catalysts on the electrochemical reduction of molecular oxygen. Electrochim Acta 52(5):2166–2174CrossRefGoogle Scholar
  17. 17.
    Massa A, Hernández S, Lamberti A, Galletti C, Russo N, Fino D (2017) Electro-oxidation of phenol over electrodeposited MnOx nanostructures and the role of a TiO2 nanotubes interlayer. Appl Catal B Environ 203:270–281CrossRefGoogle Scholar
  18. 18.
    Sotgiu G, Foderà M, Marra F, Petrucci E (2015) Production and characterization of manganese oxide-based electrodes for anodic oxidation of organic compounds. Chem Eng Trans 41:115–120Google Scholar
  19. 19.
    Wu X, Si Z, Li G, Weng D, Ma Z (2011) Effects of cerium and vanadium on the activity and selectivity of MnOx-TiO catalyst for low-temperature NH-SCR. J Rare Earth 29(1):64–68CrossRefGoogle Scholar
  20. 20.
    Ching S, Carmichael JR, Eichelberger LA, Kriz DA, Alley KA, Jackvony SE (2016) Influence of Fe, Cu, V, and Ce doping on morphology and catalytic activity of amorphous manganese oxide hollow spheres. Polyhedron 114:205–212CrossRefGoogle Scholar
  21. 21.
    Yan S, Wang J, Zhong J, Chen Y, Liu Z, Cao H, Gong M (2008) Effect of metal doping into Ce0.52x/Ce0.5-0.223. J Rare Earth 26(6):841–845CrossRefGoogle Scholar
  22. 22.
    Li X, Zhang S, Jia Y, Liu X, Zhong Q (2012) Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts. J Rare Earth 21(1):17–24Google Scholar
  23. 23.
    Xie A, Zhou X, Huang X, Ji L, Zhou W, Luo S, Yao C (2017) Cerium-loaded MnOx/attapulgite catalyst for the low-temperature NH3-selective catalytic reduction. J Ind Eng Chem 49:230–241CrossRefGoogle Scholar
  24. 24.
    Li D, Tang J, Zhou X, Li J, Sun X, Shen J, Wang L, Han W (2016) Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode. Chemosphere 149:49CrossRefGoogle Scholar
  25. 25.
    Zhang D, Wu J, Li B, Fan Y (2015) Preparation of ceramic membranes on porous Ti-Al alloy supports by an in-situ oxidation method. J Membr Sci 476(5):554–560CrossRefGoogle Scholar
  26. 26.
    Xin Y (2012) Study on preparation and photocatalytic degradation of alachlor on TiO2/Ti photoelectrodes prepared by microarc oxidation method. Procedia Eng 27:538–545CrossRefGoogle Scholar
  27. 27.
    Li J, Li J, Wang H, Cheng B, He B, Yan F, Yang Y, Guo W, Ngo HH (2013) ChemInform abstract: electrocatalytic oxidation of n‐propanol to produce propionic acid using an electrocatalytic membrane reactor. Chem Commun 44(37):4501–4503CrossRefGoogle Scholar
  28. 28.
    Wang J, Liang X, Chen P, Di Z, Yang S, Liu Z (2016) Microstructure and photocatalytic properties of Ag/Ce4+/La3+ co-modified TiO2/Basalt fiber for ammonia–nitrogen removal from synthetic wastewater. J Sol–Gel Sci Technol 82(1):289–298CrossRefGoogle Scholar
  29. 29.
    Wang H, Guan Q, Li J, Wang T (2014) Phenolic wastewater treatment by an electrocatalytic membrane reactor. Catal Today 236:121–126CrossRefGoogle Scholar
  30. 30.
    Bekermann D, Barreca D, Gasparotto A, Maccato C (2013) ChemInform abstract: multi-component oxide nanosystems by chemical vapor deposition and related routes: challenges and perspectives. Cheminform 44(14):6347–6358CrossRefGoogle Scholar
  31. 31.
    Chang IS, Clech PL, Jefferson B, Judd S (2002) Membrane fouling in membrane bioreactors for wastewater treatment. J Environ Eng 128(11):1018–1029CrossRefGoogle Scholar
  32. 32.
    Yu T, Meng L, Zhao QB, Shi Y, Hu HY, Lu Y (2017) Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation. Water Res 113:1CrossRefGoogle Scholar
  33. 33.
    Yang Y, Li J, Wang H, Song X, Wang T, He B, Liang X, Ngo HH (2011) An electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment. Angew Chem Int Ed Engl 50(9):2148–2150CrossRefGoogle Scholar
  34. 34.
    Yang Y, Wang H, Li J, He B, Wang T, Liao S (2012) Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment. Environ Sci Technol 46(12):6815–6821CrossRefGoogle Scholar
  35. 35.
    Guan Q, Wang H, Li J, Li X, Yang Y, Wang T (2013) Optimization of an electrocatalytic membrane reactor for phenolic wastewater treatment by response surface methodology. J Water. Sustainability 3(1):17–28Google Scholar
  36. 36.
    Fang X, Yin Z, Wang H, Li J, Liang X, Kang J, He B (2015) Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor. J Catal 329:187–194CrossRefGoogle Scholar
  37. 37.
    Weisser MA, Van Petegem S, Cervellino A, Van Swygenhoven H (2015) On the origin of cementite diffraction peak broadening during tensile deformation at ambient temperatures. Int J Plast 66:138–144CrossRefGoogle Scholar
  38. 38.
    Ettireddy PR, Ettireddy N, Mamedov S, Boolchand P, Smirniotis PG (2007) Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl Catal B Environ 76(1–2):123–134CrossRefGoogle Scholar
  39. 39.
    Zhou GW, Kang YS (2004) Synthesis and structural properties of manganese titanate MnTiO3 nanoparticle. Mater Sci Eng C 24(1–2):71–74CrossRefGoogle Scholar
  40. 40.
    Li M, Liu Z, Hu Y, Wang M, Li H (2008) Effect of doping elements on catalytic performance of CeO2-ZrO2 solid solutions. J Rare Earth 26(3):357–361CrossRefGoogle Scholar
  41. 41.
    Etemadi B, Mazloom J, Ghodsi FE (2017) Phase transition and surface morphology effects on optical, electrical and lithiation/delithiation behavior of nanostructured Ce-doped V2O5 thin films. Mater Sci Semicond Process 61:99–106CrossRefGoogle Scholar
  42. 42.
    Xu AW, Gao Y, Liu HQ (2002) The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal 207(2):151–157CrossRefGoogle Scholar
  43. 43.
    Khatun N, Rini EG, Shirage P, Rajput P, Jha SN, Sen S (2016) Effect of lattice distortion on bandgap decrement due to vanadium substitution in TiO2 nanoparticles. Mater Sci Semicond Process 50:7–13CrossRefGoogle Scholar
  44. 44.
    Vashook V, Vasylechko L, Zosel J et al. (2004) Crystal structure and electrical conductivity of lanthanum–calcium chromites–titanates La1-xCaxCr1-yTiyO3-d (x = 0–1, y = 0–1). J Solid State Chem 177:3784–3794CrossRefGoogle Scholar
  45. 45.
    Duan L et al. (2013) J Phys Conf Ser 418 012129Google Scholar
  46. 46.
    Mohite RG, Garg A (2017) Performance of heterogeneous catalytic wet oxidation for the removal of phenolic compounds: catalyst characterization and effect of pH, temperature, metal leaching and non-oxidative hydrothermal reaction. J Environ Chem Eng 5(1):468–478CrossRefGoogle Scholar
  47. 47.
    Liu H, Vecitis CD (2012) Reactive transport mechanism for organic oxidation during electrochemical filtration: mass-transfer, physical adsorption, and electrontransfer. J Phys Chem C 116(1):374–383CrossRefGoogle Scholar
  48. 48.
    Yang W, Yang S, Sun W, Sun G, Xin Q (2006) Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells. Electrochim Acta 52(1):9–14CrossRefGoogle Scholar
  49. 49.
    Shi ZL, Du C, Yao SH (2011) Preparation and photocatalytic activity of cerium doped anatase titanium dioxide coated magnetite composite. Photochem Photobiol 42(4):652–657Google Scholar
  50. 50.
    Wei X, Wang H, Yin Z, Qaseem S, Li J (2017) Tubular electrocatalytic membrane reactor for alcohol oxidation: CFD simulation and experiment. Chin J Chem Eng 25(1):18–25CrossRefGoogle Scholar
  51. 51.
    Samet Y, Agengui L, Abdelhédi R (2010) Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes. Chem Eng J 161(1–2):167–172CrossRefGoogle Scholar
  52. 52.
    Li J, Li J, Wang H, Cheng B, He B, Yan F, Yang Y, Guo W, Ngo HH (2013) ChemInform abstract: electrocatalytic oxidation of n‐propanol to produce propionic acid using an electrocatalytic membrane reactor. Chem Commun 49(40):4501–4503CrossRefGoogle Scholar
  53. 53.
    Han YF, Chen L, Ramesh K, Widjaja E, Chilukoti S, Surjami IK, Chen J (2008) Kinetic and spectroscopic study of methane combustion over α -Mn2O3 nanocrystal catalysts. J Catal 253(2):261–268CrossRefGoogle Scholar
  54. 54.
    Shi ZL, Du C, Yao SH (2011) Preparation and photocatalytic activity of cerium doped anatase titanium dioxide coated magnetite composite. J Taiwan Inst Chem Eng 42(4):652–657CrossRefGoogle Scholar
  55. 55.
    Xie Y, Yuan C (2003) Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Appl Catal B Environ 46(2):251–259CrossRefGoogle Scholar
  56. 56.
    Xue W, Zhang G, Xu X, Yang X, Liu C, Xu Y (2011) Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate. Chem Eng J 167(1):397–402CrossRefGoogle Scholar
  57. 57.
    Zhou L, Zhang J, He J, Hu Y, Tian H (2011) Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation. Mater Res Bull 46(10):1714–1722CrossRefGoogle Scholar
  58. 58.
    Jiang S, Zhang H, Yan Y (2015) Catalytic wet peroxide oxidation of phenol wastewater over a novel Cu–ZSM-5 membrane catalyst. Catal Commun 71:28–31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Di Zhang
    • 1
    • 2
  • Xiaoping Liang
    • 1
    • 2
  • Shanmin Yang
    • 1
    • 2
  • Zishang Chen
    • 1
    • 2
  • Huan Wang
    • 1
    • 2
  • Yu Feng
    • 1
    • 2
  • Hong Wang
    • 1
    • 2
  • Jianxin Li
    • 1
    • 2
  1. 1.State Key Laboratory of Hollow Fiber Membrane Materials and ProcessesTianjin Polytechnic UniversityTianjinChina
  2. 2.School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations