Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 63–72 | Cite as

Bis(triethoxysilyl)ethane (BTESE)-derived silica membranes: pore formation mechanism and gas permeation properties

  • Norihiro Moriyama
  • Hiroki Nagasawa
  • Masakoto Kanezashi
  • Kenji Ito
  • Toshinori Tsuru
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Abstract

Based on their high performance in gas and liquid-phase separations, 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica membranes have attracted much attention. To improve performance, we focused on the acid molar ratio (AR) in sol preparation and its effect on the pore formation mechanism during sol-gel processing. BTESE-derived sols with AR = 10−4–100 were prepared, and the effect of the AR on the gel structure was evaluated in detail via FT-IR, nuclear magnetic resonance (NMR), N2 adsorption, and positron annihilation lifetime (PAL) measurements. The chemical structure of the gels was confirmed by FT-IR and NMR and showed that sols with the largest number of silanol groups (AR = 10−2) experienced a significant increase in condensation during the firing process. The porous structures of fired gels characterized by N2 adsorption and PAL measurement showed that the AR = 10−2 fired gel consisted of a larger number of small pores that had formed during the firing process. Single-gas permeation experiments showed high H2 permeance (5–9 × 10−7 mol/(m2 Pa s)) and H2/CF4 selectivity (700–20,000). The gas permselectivity (He/H2, H2/N2, and H2/CF4) was highest for the intermediate AR (=10−2), which corresponded to the greatest amount of silanol groups in unfired gels and confirmed that small pores had formed from the condensation of silanol groups during firing.

Keywords

Organosilica membrane gas permeation pore-size control 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4618_MOESM1_ESM.docx (843 kb)
Supplementary Figure Legends(DOCX 843 kb)

References

  1. 1.
    Sun B, Zhou G, Zhang H (2016) Synthesis functionalization, and applications of morphology-controllable silica-based nanostructures: a review. Prog Solid State Chem 44:1–19CrossRefGoogle Scholar
  2. 2.
    Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S (2014) Sol-gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 214:17–37CrossRefGoogle Scholar
  3. 3.
    Park SS, Moorthy MS, Ha CS (2014) Periodic mesoporous organosilicas for advanced applications. NPG Asia Mater 6:96CrossRefGoogle Scholar
  4. 4.
    Yamamoto E, Kuroda K (2016) Colloidal mesoporous silica nanoparticles. Bull Chem Soc Jpn 89:501–539CrossRefGoogle Scholar
  5. 5.
    Alarcos N, Cohen B, Ziolek M, Douhal A (2017) Photochemistry and photophysics in silica-based materials: ultrafast and single molecule spectroscopy observation. Chem Rev 117:13639–13720CrossRefGoogle Scholar
  6. 6.
    Tsuru T (2008) Nano/subnano-tuning of porous ceramic membranes for molecular separation. J Sol-Gel Sci Technol 46:349–361CrossRefGoogle Scholar
  7. 7.
    de Vos RM, Verweij H (1998) High-selectivity, high-flux silica membranes for gas separation. Science 279:1710–1711CrossRefGoogle Scholar
  8. 8.
    Duke MC, da Costa JCD, Do DD, Gray PG, Lu GQ (2006) Hydrothermally robust molecular sieve silica for wet gas separation. Adv Func Mater 16:1215–1220CrossRefGoogle Scholar
  9. 9.
    Kanezashi M, Sasaki T, Tawarayama H, Yoshioka T, Tsuru T (2013) Hydrogen permeation properties and hydrothermal stability of sol–gel-derived amorphous silica membranes fabricated at high temperatures. J Am Ceram Soc 96:2950–2957CrossRefGoogle Scholar
  10. 10.
    Kreiter R, Rietkerk MDA, Castricum HL, van Veen HM, ten Elshof JE, Vente JF (2011) Evaluation of hybrid silica sols for stable microporous membranes using high-throughput screening. J Sol-Gel Sci Technol 57:245–252CrossRefGoogle Scholar
  11. 11.
    Kanezashi M, Yoneda Y, Nagasawa H, Toshinori T, Yamamoto K, Ohshita J (2017) Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures. AIChE J 63:4491–4498CrossRefGoogle Scholar
  12. 12.
    Kanezashi M, Yada K, Yoshioka T, Tsuru T (2009) Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability. J Am Chem Soc 131:414–415CrossRefGoogle Scholar
  13. 13.
    Niimi T, Nagasawa H, Kanezashi M, Yoshioka T, Ito K, Tsuru T (2014) Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation. J Membr Sci 455:375–383CrossRefGoogle Scholar
  14. 14.
    Yu X, Meng L, Niimi T, Nagasawa H, Kanezashi M, Yoshioka T, Toshinori T (2016) Network engineering of a BTESE membrane for improved gas performance via a novel pH-swing method. J Membr Sci 511:219–227CrossRefGoogle Scholar
  15. 15.
    Castricum HL, Paradis GG, Mittelmeijer-Hazeleger MC, Bras W, Eeckhaut G, Vente JF, Rothenberg G, ten Elshof JE (2014) Tuning the nanopore structure and separation behavior of hybrid organosilica membranes. Microporous Mesoporous Mater 185:224–234CrossRefGoogle Scholar
  16. 16.
    Castricum HL, Qureshi HF, Nijimeijer A, Winnubst L (2015) Hybrid silica membranes with enhanced hydrogen and CO2 separation properties. J Membr Sci 488:121–128CrossRefGoogle Scholar
  17. 17.
    Song H, Wei Y, Qi H (2017) Tailoring pore structures to improve the permselectivity of organosilica membranes by tuning calcination parameters. J Mater Chem A 5:24657–24666CrossRefGoogle Scholar
  18. 18.
    Gong G, Wang J, Nagasawa H, Kanezashi M, Yoshioka T, Tsuru T (2014) Synthesis and characterization of a layered-hybrid membrane consisting of an organosilica separation layer on a polymeric nanofiltration membrane. J Membr Sci 472:19–28CrossRefGoogle Scholar
  19. 19.
    Wang J, Kanezashi M, Yoshioka T, Tsuru T (2012) Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes. J Membr Sci 415–416:810–815CrossRefGoogle Scholar
  20. 20.
    Rong X, Zou Lin, Lin Peng, Zhang Qi, Zhong Jing (2016) Pervaporative desulfurization of model gasoline using PDMS/BTESE-derived organosilica hybrid membranes. Fuel Process Technol 154:188–196CrossRefGoogle Scholar
  21. 21.
    Ibrahim SM, Nagasawa H, Kanezashi M, Tsuru T (2015) Robust organosilica membranes for high temperature reverse osmosis (RO) application: Membrane preparation, separation characteristics of solutes and membrane regeneration. J Membr Sci 493:515–523CrossRefGoogle Scholar
  22. 22.
    Qureshi HF, Nijmeijer A, Winnubst L (2013) Influence of sol–gel process parameters on the micro-structure and performance of hybrid silica membranes. J Membr Sci 446:19–25CrossRefGoogle Scholar
  23. 23.
    Igi R, Yoshioka T, Ikuhara YH, Iwamoto Y, Tsuru T (2008) Characterization of Co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J Am Ceram Soc 91:2975–2981CrossRefGoogle Scholar
  24. 24.
    Ito K, Oka T, Kobayashi Y, Suzuki R, Ohdaira T (2012) Variable-energy positron study of nanopore structure in hydrocarbon-siliconoxide hybrid PECVD films. Phys Procedia 35:140–144CrossRefGoogle Scholar
  25. 25.
    Kirkegaard P, Jørgen N, Eldrup M (1989) PATFIT-88: a data processing system for positron annihilation spectra on mainframe and personal computers. Riso National Laboratory, DenmarkGoogle Scholar
  26. 26.
    Tao SJ (1972) Psitronium annihilation in molecular substances. J Chem Phys 56:5499–5510CrossRefGoogle Scholar
  27. 27.
    Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58CrossRefGoogle Scholar
  28. 28.
    Lee HR, Kanezashi M, Shimomura Y, Yoshioka T, Tsuru T (2011) Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation. AIChE J 57:2755–2765CrossRefGoogle Scholar
  29. 29.
    Yoshioka T, Kanezashi M, Tsuru T (2013) Micropore size estimation on gas separation membranes: a study in experimental and molecular dynamics. AIChE J 59:2179–2194CrossRefGoogle Scholar
  30. 30.
    Gao B, Tang Y, Zhu C, Zhang Z (1997) Synthesis and hydrolysis of hybridized silicon alkoxide: Si(OEt)x(OBut)4−x. Part I: synthesis and Identification of the Si(OEt)x(OBut)4−x. J Sol-Gel Sci Technol 10:247–253CrossRefGoogle Scholar
  31. 31.
    Grill A (2009) Porous pSICOH ultralow-k dielectrics for chip interconnects prepared by PECVD. Annu Rev Mater Res 39:49–69CrossRefGoogle Scholar
  32. 32.
    Ishida H, Koenig JL (1978) Fourier transform infrared spectroscopic study of the silane coupling agent/porous silica interface. J Colloid Interface Sci 64:555–564CrossRefGoogle Scholar
  33. 33.
    Liang Y, Anwander R (2004) Synthesis of pore-enlarged mesoporous organosilicas under basic conditions. Microporous Mesoporous Mater 72:153–165CrossRefGoogle Scholar
  34. 34.
    Wahab MA, Kim II, Ha CS (2004) Hybrid periodic mesoporous organosilica materials prepared from 1,2-bis(triethoxysilyl)ethane and (3-cyanopropyl)triethoxysilane. Microporous Mesoporous Mater 69:19–27CrossRefGoogle Scholar
  35. 35.
    Masse S, Laurent G, Babonneau F (2007) High temperature behavior of periodic mesoporous ethanesilica glasses prepared from a bridged silsesquioxane and a non-ionic triblock copolymer. J Non Cryst Solids 53:1109–1119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Norihiro Moriyama
    • 1
  • Hiroki Nagasawa
    • 1
  • Masakoto Kanezashi
    • 1
  • Kenji Ito
    • 2
  • Toshinori Tsuru
    • 1
  1. 1.Department of Chemical EngineeringHiroshima UniversityHigashihiroshimaJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations