Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 104–111 | Cite as

Facile and rapid synthesis of nanoplates Mg(OH)2 and MgO via Microwave technique from metal source: structural, optical and dielectric properties

  • H. Y. Zahran
  • S. S. Shneouda
  • I. S. Yahia
  • Farid El-Tantawy
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 116 Downloads

Abstract

Magnesium hydroxide and magnesium oxide nanostructures have been prepared by microwave/hydrothermal technique using magnesium metal in hydrogen peroxide (H2O2). The applied power of the microwave was 700 W for 10 min at 145 °C. The method produced Mg(OH)2 powder as a base material for MgO by calcinations at 550 °C for 2 h. X-ray diffraction data confirms the microwave production of Mg(OH)2 and (MgO) through the agreement with the standard JCDPS cards. Scanning electron microscopy shows nanoplates morphology for Mg(OH)2 and large-scale nanoplates with a hexagonal shape for MgO. The fundamental direct optical band gap of Mg(OH)2 equals 5.8 eV while for MgO equals 5.2 eV from the analysis of diffused reflectance data. MgO has higher dielectric constant than Mg(OH)2 at the higher frequencies. AC electrical conductivity increases with increasing the applied frequency for both materials. The microwave-hydrothermal technique shows a promising method for production of magnesium compounds from magnesium metal which can be used in different aspects such as catalysis, wastewater treatment, pharmaceutical and coated materials.

SEM images of MgO nano-plates

Keywords

Mg(OH)2 MgO Nanoplates Microwave-hydrothermal technique Diffused reflectance Dielectric properties 

Notes

Acknowledgements

The authors are grateful to The Research Center for Advanced Material Science (RCAMS) at King Khalid University, with grant number (RCAMS-1-17-5).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Chem Soc Rev 29:27–35CrossRefGoogle Scholar
  2. 2.
    Lv J, Qiu L, Qu B (2004) Nanotechnology 15:1576–1578CrossRefGoogle Scholar
  3. 3.
    Yan L, Zhuang J, Sun X, Deng Z, Li Y (2002) Mater Chem Phys 76(2):119–122CrossRefGoogle Scholar
  4. 4.
    Ma RZ, Bando Y (2003) Chem Phys Lett 370:770CrossRefGoogle Scholar
  5. 5.
    Selvama NCS, Kumara RT, Kennedyb LJ, Vijaya JJ (2011) J Alloy Compd 509:9809–9815CrossRefGoogle Scholar
  6. 6.
    Kumar A, Kumar J (2008) J Phys Chem Solids 69:2764CrossRefGoogle Scholar
  7. 7.
    Fang F, Hu B, Wang L, Lu R, Yang C (2008) Front. Chem. China 3:193–197Google Scholar
  8. 8.
    Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y (2001) Chem Mater 13:435CrossRefGoogle Scholar
  9. 9.
    Niu H, Yang Q, Tang K, Xie Y (2006) J Nanopart Res 8:881CrossRefGoogle Scholar
  10. 10.
    Geng B, Zhang L, Meng G, Xie T, Peng X, Lin Y (2003) J Cryst Growth 259:291–295CrossRefGoogle Scholar
  11. 11.
    Shall ME, Slack W, Vann W, Kane D, Hanley D (1998) J Phys Chem 98:3067CrossRefGoogle Scholar
  12. 12.
    Subramania A, Kumar GV, Priya ARS, Vasudevan T (2007) Nanotechnology 18:225601CrossRefGoogle Scholar
  13. 13.
    Matthews JS, Just O, Johnson BO, Rees WS (2000) J Chem Vap Depos 6:129CrossRefGoogle Scholar
  14. 14.
    Aslan K, Geddes CD (2008) Plasmonics 3:89CrossRefGoogle Scholar
  15. 15.
    Al-Gaashani R, Radiman S, Al-Douri Y, Tabet N, Daud AR (2012) J Alloy Comp 521:71–76CrossRefGoogle Scholar
  16. 16.
    Shah MA, Qurashi A (2009) J Alloy Comp 482:548–551CrossRefGoogle Scholar
  17. 17.
    Li XC, Xiao W, He GH, Zheng WJ, Yu NS, Tan M (2012) Colloids Surf A 408:79–86CrossRefGoogle Scholar
  18. 18.
    Bhatte KD, Sawant DN, Deshmukh KM, Bhanage BM (2012) Particuology 10:384–387CrossRefGoogle Scholar
  19. 19.
    Callister WD (1997) Materials Science and Engineering: An Introduction. Wiley, New YorkGoogle Scholar
  20. 20.
    Zahran HY, Yahia IS (2015) Appl Phys 119:1397–1403CrossRefGoogle Scholar
  21. 21.
    Yousefi S, Ghasemi B, Tajally M, Asghari A (2017) J Alloy Compd 711:521–529CrossRefGoogle Scholar
  22. 22.
    Sathyamoorthy R, Mageshwari K, Mali SS, Priyadharshini S, Patil PS (2013) Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route. Ceram Int 39:323–330CrossRefGoogle Scholar
  23. 23.
    Weckhuysen BM, Schoonheydt RA (1999) Catal Today 49:441–451CrossRefGoogle Scholar
  24. 24.
    Yakuphanoglu F, Mehrotra R, Gupta A, Munoz M (2009) J Appl Polym Sci 114:794CrossRefGoogle Scholar
  25. 25.
    Hafez M, Yahia IS, Taha S (2014) Spectrochim Acta A 127:521–529CrossRefGoogle Scholar
  26. 26.
    Bindhu MR, Umadevi M, Kavin Micheal M, Arasu MV, Abdullah Al-Dhabi N (2016) Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater Lett 166:19–22CrossRefGoogle Scholar
  27. 27.
    Mbarki R, Hamzaoui AH, M’nif A (2015) Dielectric properties and electrical conductivity of MgO synthesized by chemical precipitation and sol-gel method. Eur Phys J Appl Phys 69:10402CrossRefGoogle Scholar
  28. 28.
    Sierra-Fernandez A, Gomez-Villalba LS, Milosevic O, Fort R, Rabanal ME (2014) Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. Ceram Int 40:12285–12292CrossRefGoogle Scholar
  29. 29.
    Hadia NMA, Mohamed HAH (2015) Characteristics and optical properties of MgO nanowires synthesized by solvothermal method. Mater Sci Semicond Process 29:238–244CrossRefGoogle Scholar
  30. 30.
    Prashantha SC, Lakshminarasappa BN, Nagabhushana BM (2011) J Alloy Comp 509:10185–10189CrossRefGoogle Scholar
  31. 31.
    Brodie G, Jacob MV, Farrell P (2016) Microwave and Radio-Frequency Technologies in Agriculture: An Introduction for Agriculturalists and Engineers, Walter de Gruyter Open Ltd. Warschau/BerlinGoogle Scholar
  32. 32.
    Bouzidi A, Yahia IS, El-Sadek MSA (2017) Dyes Pigments 146:66–72CrossRefGoogle Scholar
  33. 33.
    Huang Z, Zhou W, Tang X, Luo Fa, Zhu J (2012) Int J Appl Ceram Technol 9(2):413–420CrossRefGoogle Scholar
  34. 34.
    Qing YC, Zhou WC, Jia S, Luo F, Zhu DM (2010) Appl Phys A 100:1177–1181CrossRefGoogle Scholar
  35. 35.
    Mansour ShA, Yahia IS, Yakuphanoglu F (2010) Dyes Pigm 87:144–148CrossRefGoogle Scholar
  36. 36.
    Yaghmour SJ (2010) Eur Phys J Appl Phys 49:10402CrossRefGoogle Scholar
  37. 37.
    Mbarki R, Mnif A, Hamzaoui AH (2015) Mater Sci Semicond Process 29:300–306CrossRefGoogle Scholar
  38. 38.
    Jonscher AK (1977) Nature 267:673–679CrossRefGoogle Scholar
  39. 39.
    Shukla N, Kumar V, Dwivedi DK (2016) J Non-Oxide Glass 8:47–57Google Scholar
  40. 40.
    Elliot SR (1978) Solid State Comm 27:749CrossRefGoogle Scholar
  41. 41.
    Wahab LA, Zayed HA, Farrag AA (2012) Arab J Nucl Sci Appl 45:290–305Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. Y. Zahran
    • 1
    • 2
  • S. S. Shneouda
    • 2
  • I. S. Yahia
    • 1
    • 2
    • 3
  • Farid El-Tantawy
    • 4
  1. 1.Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of EducationAin Shams UniversityRoxyEgypt
  3. 3.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
  4. 4.Physics Department, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt

Personalised recommendations