Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 175–186 | Cite as

Preparation of SiO2–ZrO2 xerogel and its application for the removal of organic dye

  • Guoliang Huang
  • Wenxu Li
  • Ying Song
Original Paper: Sol-gel and hybrid materials for energy, environment and building applications


SiO2–ZrO2 xerogel was prepared via a sol–gel method followed by ambient pressure drying. The xerogel was characterized by X-ray diffraction, thermal analysis, fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption analysis. The results showed that the SiO2–ZrO2 xerogel was amorphous and possessed a three-dimensional network structure with a narrow distribution of pore size. Its specific surface area reached up to 525.6 m2/g after 600 °C heat treatment, with a pore volume of 1.16 cm3/g and an average pore size of 8.5 nm. In order to explore the potential application of the SiO2–ZrO2 xerogel for the removal of organic dyes, its adsorption capacity was studied by removal of Rhodamine B (RhB) from aqueous solution through batch experiments. The results showed that the adsorption process of RhB onto SiO2–ZrO2 xerogel was slightly promoted under acidic conditions and significantly inhibited under strong alkaline conditions. And adsorption equilibrium can be achieved in 30 min. The kinetic data of the adsorption were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the pseudo-second-order model described the adsorption mechanism better. The sorption behavior was evaluated by Langmuir and Freundlich isotherm models. The results suggested that the Langmuir model could accurately describe the experimental data and the adsorption capacity qmax was 177.7 mg/g. Thermodynamic analysis revealed that the adsorption of RhB onto the SiO2–ZrO2 xerogel was both spontaneous and exothermic in nature. Thus, the as-prepared SiO2–ZrO2 xerogel might be used as an adsorbent for wastewater treatment, especially for the removal of dyes.


SiO2–ZrO2 xerogel Sol–gel method Ambient pressure drying Dye adsorption Removal of Rhodamine B 



This work was financially supported by the Key Scientific and Technological Projects of Heilongjiang Province (grant no. GC13A102) and the Projects of 2013 Science and Technological Innovation Platform in the Field of Manufacturing, China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yang C, Cheng J, Chen Y, Hu Y (2017) J Colloid Interface Sci 504:39–47CrossRefGoogle Scholar
  2. 2.
    Mady AH, Baynosa ML, Tuma D, Shim J (2017) Applied Catal B Environ 203:416–427CrossRefGoogle Scholar
  3. 3.
    Nidheesh PV, Gandhimathi R (2014) Clean Soil Air Water 42(6):779–784CrossRefGoogle Scholar
  4. 4.
    Uner O, Gecgel U, Kolancilar H, Bayrak Y (2017) Chem Eng Commun 204(7):772–783CrossRefGoogle Scholar
  5. 5.
    Khan TA, Nazir M, Khan EA (2013) Toxicol Anden Chem 95(6):919–931CrossRefGoogle Scholar
  6. 6.
    Zhang D (2013) Russ J Phys Chem A 87(1):129–136CrossRefGoogle Scholar
  7. 7.
    Zhang L, Zhang J, Jiu H, Ni C, Zhang X, Xu M (2015) J Phys Chem Solids 86:82–89CrossRefGoogle Scholar
  8. 8.
    Hua S, Yu X, Li F, Duan J, Ji H, Liu W (2017) Colloids Surf A Physicochem Eng Asp 516:211–218CrossRefGoogle Scholar
  9. 9.
    Nidheesh PV, Gandhimathi R, Velmathi S, Sanjini NS (2014) RSC Adv 4(11):5698CrossRefGoogle Scholar
  10. 10.
    Isanejad M, Arzani M, Mahdavi HR, Mohammadi T (2017) J Mol Liq 225:800–809CrossRefGoogle Scholar
  11. 11.
    Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X et al. (2012) Carbon N Y 50(6):2337–2346CrossRefGoogle Scholar
  12. 12.
    Abay AK, Chen X, Kuo D (2017) New J Chem 41(13):5628–5638CrossRefGoogle Scholar
  13. 13.
    Ahmedchekkat F, Medjram MS, Chiha M, Mahmoud Ali Al-bsoul A (2011) Chem Eng J 178:244–251CrossRefGoogle Scholar
  14. 14.
    Reddy KR, Hassan M, Gomes VG (2015) Appl Catal A Gen 489:1–16CrossRefGoogle Scholar
  15. 15.
    Bian X, Lu X, Xue Y, Zhang C, Kong L, Wang C (2013) J Colloid Interface Sci 406:37–43CrossRefGoogle Scholar
  16. 16.
    Gad HMH, El-Sayed AA (2009) J Hazard Mater 168(2–3):1070–1081CrossRefGoogle Scholar
  17. 17.
    Yuan Z, Wang Y, Han X, Chen D (2015) J Appl Polym Sci 132(28):42244(1/8)–42244(8/8)CrossRefGoogle Scholar
  18. 18.
    Gao SMML (2017) Chin Phys B 26(5):407–413Google Scholar
  19. 19.
    Hou Y, Zhang X, Wang C, Qi D, Gu Y, Wang Z et al. (2017) New J Chem 41(14):6145–6151CrossRefGoogle Scholar
  20. 20.
    Jia H, Liu N (2017) Water Sci Technol 75(7):1651–1658CrossRefGoogle Scholar
  21. 21.
    Da Silva Lacerda V, López-Sotelo JB, Correa-Guimarães A, Hernández-Navarro S, Sánchez-Báscones M, Navas-Gracia LM et al. (2015) J Environ Manag 155:67–76CrossRefGoogle Scholar
  22. 22.
    Ni X, Li Y, Zhang Z, Shen J, Zhou B, Wu G (2010) Rare Metal Mater Eng 392:22–25Google Scholar
  23. 23.
    Wu Z, Zhao Y, Liu D (2004) Microporous Mesoporous Mater 68(1–3):127–132CrossRefGoogle Scholar
  24. 24.
    Ren J, Cai X, Yang H, Guo X (2015) J Porous Mater 22(4):973–978CrossRefGoogle Scholar
  25. 25.
    He J, Li X, Su D, Ji H, Zhang X, Zhang W (2016) J Mater Chem A 4(15):5632–5638CrossRefGoogle Scholar
  26. 26.
    Garcı́a-Heras M, Rincón JM, Romero M, Villegas MA (2003) Mater Res Bull 38(11–12):1635–1644CrossRefGoogle Scholar
  27. 27.
    Jin T, Kuraoka K, Matsumura Y, Onishi T, Yazawa T (2002) Commun Am Ceram Soc 85(10):2569–2571CrossRefGoogle Scholar
  28. 28.
    López T, Tzompantzi F, Hernández-Ventura J, Gómez R, Bokhimi X, Pecchi G et al. (2002) J Sol Gel Sci Technol 24(3):207–219CrossRefGoogle Scholar
  29. 29.
    Rana MS, Maity SK, Ancheyta J, Dhar GM, Rao T (2004) Appl Catal A Gen 268(1-2):89–97CrossRefGoogle Scholar
  30. 30.
    Fisher IA, Bell AT (1999) J Catal 184(2):357–376CrossRefGoogle Scholar
  31. 31.
    Kuzminska M, Kovalchuk TV, Backov R, Gaigneaux EM (2014) J Catal 320:1–8CrossRefGoogle Scholar
  32. 32.
    Zhang X, Wang T, Ma L, Zhang Q, Yu Y, Liu Q (2013) Catal Commun 33:15–19CrossRefGoogle Scholar
  33. 33.
    Zhuang Q, Miller JM (2001) Appl A Gen 209(1):L1–L6Google Scholar
  34. 34.
    Cui S, Yu S, Lin B, Shen X, Zhang X, Gu D (2017) J Porous Mater 24(2):455–461CrossRefGoogle Scholar
  35. 35.
    Kongwudthiti S, Praserthdam P, Tanakulrungsank W, Inoue M (2003) J Mater Process Technol 136(1–3):186–189CrossRefGoogle Scholar
  36. 36.
    Jiang Y, Feng J, Feng J (2017) J Sol Gel Sci Technol 83(1):64–71CrossRefGoogle Scholar
  37. 37.
    Wu X, Shao G, Liu S, Shen X, Cui S, Chen X (2017) Powder Technol 312:1–10CrossRefGoogle Scholar
  38. 38.
    Zu G, Shen J, Zou L, Zou W, Guan D, Wu Y et al. (2017) Microporous Mesoporous Mater 238:90–96CrossRefGoogle Scholar
  39. 39.
    Chen Q, Wang H, Sun L (2017) Materials 10(4):435CrossRefGoogle Scholar
  40. 40.
    Han H, Wei W, Jiang Z, Lu J, Zhu J, Xie J (2016) Colloids Surf A Physicochem Eng Asp 509:539–549CrossRefGoogle Scholar
  41. 41.
    Guo H, Lin F, Chen J, Li F, Weng W (2015) Appl Organomet Chem 29(1):12–19CrossRefGoogle Scholar
  42. 42.
    Hou M, Ma C, Zhang W, Tang X, Fan Y, Wan H (2011) J Hazard Mater 186(2–3):1118–1123CrossRefGoogle Scholar
  43. 43.
    Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL (2010) Bioresour Technol 101(24):9500–9507CrossRefGoogle Scholar
  44. 44.
    Fosso-Kankeu E, Mittal H, Mishra SB, Mishra AK (2015) J Ind Eng Chem 22:171–178CrossRefGoogle Scholar
  45. 45.
    Smitha T, Santhi T, Prasad AL, Manonmani S (2017) Arab J Chem 10:S244–S251CrossRefGoogle Scholar
  46. 46.
    Bhowmik T, Kundu MK, Barman S (2015) RSC Adv 5(48):38760–38773CrossRefGoogle Scholar
  47. 47.
    Chang S, Wang K, Li H, Wey M, Chou J (2009) J Hazard Mater 172(2–3):1131–1136CrossRefGoogle Scholar
  48. 48.
    Oyetade OA, Nyamori VO, Martincigh BS, Jonnalagadda SB (2015) RSC Adv 5(29):22724–22739CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations