Skip to main content
Log in

Preparation of SiO2–ZrO2 xerogel and its application for the removal of organic dye

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SiO2–ZrO2 xerogel was prepared via a sol–gel method followed by ambient pressure drying. The xerogel was characterized by X-ray diffraction, thermal analysis, fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption analysis. The results showed that the SiO2–ZrO2 xerogel was amorphous and possessed a three-dimensional network structure with a narrow distribution of pore size. Its specific surface area reached up to 525.6 m2/g after 600 °C heat treatment, with a pore volume of 1.16 cm3/g and an average pore size of 8.5 nm. In order to explore the potential application of the SiO2–ZrO2 xerogel for the removal of organic dyes, its adsorption capacity was studied by removal of Rhodamine B (RhB) from aqueous solution through batch experiments. The results showed that the adsorption process of RhB onto SiO2–ZrO2 xerogel was slightly promoted under acidic conditions and significantly inhibited under strong alkaline conditions. And adsorption equilibrium can be achieved in 30 min. The kinetic data of the adsorption were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the pseudo-second-order model described the adsorption mechanism better. The sorption behavior was evaluated by Langmuir and Freundlich isotherm models. The results suggested that the Langmuir model could accurately describe the experimental data and the adsorption capacity qmax was 177.7 mg/g. Thermodynamic analysis revealed that the adsorption of RhB onto the SiO2–ZrO2 xerogel was both spontaneous and exothermic in nature. Thus, the as-prepared SiO2–ZrO2 xerogel might be used as an adsorbent for wastewater treatment, especially for the removal of dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang C, Cheng J, Chen Y, Hu Y (2017) J Colloid Interface Sci 504:39–47

    Article  Google Scholar 

  2. Mady AH, Baynosa ML, Tuma D, Shim J (2017) Applied Catal B Environ 203:416–427

    Article  Google Scholar 

  3. Nidheesh PV, Gandhimathi R (2014) Clean Soil Air Water 42(6):779–784

    Article  Google Scholar 

  4. Uner O, Gecgel U, Kolancilar H, Bayrak Y (2017) Chem Eng Commun 204(7):772–783

    Article  Google Scholar 

  5. Khan TA, Nazir M, Khan EA (2013) Toxicol Anden Chem 95(6):919–931

    Article  Google Scholar 

  6. Zhang D (2013) Russ J Phys Chem A 87(1):129–136

    Article  Google Scholar 

  7. Zhang L, Zhang J, Jiu H, Ni C, Zhang X, Xu M (2015) J Phys Chem Solids 86:82–89

    Article  Google Scholar 

  8. Hua S, Yu X, Li F, Duan J, Ji H, Liu W (2017) Colloids Surf A Physicochem Eng Asp 516:211–218

    Article  Google Scholar 

  9. Nidheesh PV, Gandhimathi R, Velmathi S, Sanjini NS (2014) RSC Adv 4(11):5698

    Article  Google Scholar 

  10. Isanejad M, Arzani M, Mahdavi HR, Mohammadi T (2017) J Mol Liq 225:800–809

    Article  Google Scholar 

  11. Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X et al. (2012) Carbon N Y 50(6):2337–2346

    Article  Google Scholar 

  12. Abay AK, Chen X, Kuo D (2017) New J Chem 41(13):5628–5638

    Article  Google Scholar 

  13. Ahmedchekkat F, Medjram MS, Chiha M, Mahmoud Ali Al-bsoul A (2011) Chem Eng J 178:244–251

    Article  Google Scholar 

  14. Reddy KR, Hassan M, Gomes VG (2015) Appl Catal A Gen 489:1–16

    Article  Google Scholar 

  15. Bian X, Lu X, Xue Y, Zhang C, Kong L, Wang C (2013) J Colloid Interface Sci 406:37–43

    Article  Google Scholar 

  16. Gad HMH, El-Sayed AA (2009) J Hazard Mater 168(2–3):1070–1081

    Article  Google Scholar 

  17. Yuan Z, Wang Y, Han X, Chen D (2015) J Appl Polym Sci 132(28):42244(1/8)–42244(8/8)

    Article  Google Scholar 

  18. Gao SMML (2017) Chin Phys B 26(5):407–413

    Google Scholar 

  19. Hou Y, Zhang X, Wang C, Qi D, Gu Y, Wang Z et al. (2017) New J Chem 41(14):6145–6151

    Article  Google Scholar 

  20. Jia H, Liu N (2017) Water Sci Technol 75(7):1651–1658

    Article  Google Scholar 

  21. Da Silva Lacerda V, López-Sotelo JB, Correa-Guimarães A, Hernández-Navarro S, Sánchez-Báscones M, Navas-Gracia LM et al. (2015) J Environ Manag 155:67–76

    Article  Google Scholar 

  22. Ni X, Li Y, Zhang Z, Shen J, Zhou B, Wu G (2010) Rare Metal Mater Eng 392:22–25

    Google Scholar 

  23. Wu Z, Zhao Y, Liu D (2004) Microporous Mesoporous Mater 68(1–3):127–132

    Article  Google Scholar 

  24. Ren J, Cai X, Yang H, Guo X (2015) J Porous Mater 22(4):973–978

    Article  Google Scholar 

  25. He J, Li X, Su D, Ji H, Zhang X, Zhang W (2016) J Mater Chem A 4(15):5632–5638

    Article  Google Scholar 

  26. Garcı́a-Heras M, Rincón JM, Romero M, Villegas MA (2003) Mater Res Bull 38(11–12):1635–1644

    Article  Google Scholar 

  27. Jin T, Kuraoka K, Matsumura Y, Onishi T, Yazawa T (2002) Commun Am Ceram Soc 85(10):2569–2571

    Article  Google Scholar 

  28. López T, Tzompantzi F, Hernández-Ventura J, Gómez R, Bokhimi X, Pecchi G et al. (2002) J Sol Gel Sci Technol 24(3):207–219

    Article  Google Scholar 

  29. Rana MS, Maity SK, Ancheyta J, Dhar GM, Rao T (2004) Appl Catal A Gen 268(1-2):89–97

    Article  Google Scholar 

  30. Fisher IA, Bell AT (1999) J Catal 184(2):357–376

    Article  Google Scholar 

  31. Kuzminska M, Kovalchuk TV, Backov R, Gaigneaux EM (2014) J Catal 320:1–8

    Article  Google Scholar 

  32. Zhang X, Wang T, Ma L, Zhang Q, Yu Y, Liu Q (2013) Catal Commun 33:15–19

    Article  Google Scholar 

  33. Zhuang Q, Miller JM (2001) Appl A Gen 209(1):L1–L6

    Google Scholar 

  34. Cui S, Yu S, Lin B, Shen X, Zhang X, Gu D (2017) J Porous Mater 24(2):455–461

    Article  Google Scholar 

  35. Kongwudthiti S, Praserthdam P, Tanakulrungsank W, Inoue M (2003) J Mater Process Technol 136(1–3):186–189

    Article  Google Scholar 

  36. Jiang Y, Feng J, Feng J (2017) J Sol Gel Sci Technol 83(1):64–71

    Article  Google Scholar 

  37. Wu X, Shao G, Liu S, Shen X, Cui S, Chen X (2017) Powder Technol 312:1–10

    Article  Google Scholar 

  38. Zu G, Shen J, Zou L, Zou W, Guan D, Wu Y et al. (2017) Microporous Mesoporous Mater 238:90–96

    Article  Google Scholar 

  39. Chen Q, Wang H, Sun L (2017) Materials 10(4):435

    Article  Google Scholar 

  40. Han H, Wei W, Jiang Z, Lu J, Zhu J, Xie J (2016) Colloids Surf A Physicochem Eng Asp 509:539–549

    Article  Google Scholar 

  41. Guo H, Lin F, Chen J, Li F, Weng W (2015) Appl Organomet Chem 29(1):12–19

    Article  Google Scholar 

  42. Hou M, Ma C, Zhang W, Tang X, Fan Y, Wan H (2011) J Hazard Mater 186(2–3):1118–1123

    Article  Google Scholar 

  43. Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL (2010) Bioresour Technol 101(24):9500–9507

    Article  Google Scholar 

  44. Fosso-Kankeu E, Mittal H, Mishra SB, Mishra AK (2015) J Ind Eng Chem 22:171–178

    Article  Google Scholar 

  45. Smitha T, Santhi T, Prasad AL, Manonmani S (2017) Arab J Chem 10:S244–S251

    Article  Google Scholar 

  46. Bhowmik T, Kundu MK, Barman S (2015) RSC Adv 5(48):38760–38773

    Article  Google Scholar 

  47. Chang S, Wang K, Li H, Wey M, Chou J (2009) J Hazard Mater 172(2–3):1131–1136

    Article  Google Scholar 

  48. Oyetade OA, Nyamori VO, Martincigh BS, Jonnalagadda SB (2015) RSC Adv 5(29):22724–22739

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Scientific and Technological Projects of Heilongjiang Province (grant no. GC13A102) and the Projects of 2013 Science and Technological Innovation Platform in the Field of Manufacturing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights:

  • Prepare SiO2–ZrO2 xerogel by ambient pressure drying.

  • The porous performance of SiO2–ZrO2 xerogel was improved after calcination.

  • The absorption mechanisms of RhB onto SiO2–ZrO2 xerogel have been discussed.

  • The adsorption capacity of RhB onto SiO2–ZrO2 xerogel is high.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Li, W. & Song, Y. Preparation of SiO2–ZrO2 xerogel and its application for the removal of organic dye. J Sol-Gel Sci Technol 86, 175–186 (2018). https://doi.org/10.1007/s10971-018-4611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4611-4

Keywords

Navigation