Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 141–150 | Cite as

Structural, electrical, and optical properties of sol-gel-derived zirconium-doped barium titanate thin films on transparent conductive substrates

  • Aryan Kheyrdan
  • Hossein Abdizadeh
  • Amid Shakeri
  • Mohammad Reza Golobostanfard
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications


Barium zirconium titanate (Ba(Zr x Ti1−x)O3, BZT) super smooth thin films are synthesized through modified sol-gel dip coating route on fluorine-doped tin oxide substrates with a suitably low calcination temperature. The Fourier tranformed infrared spectroscopy proves that impurities and starting materials are completely removed in the calcination process. Crystallographic phases of the samples are identified by the X-ray diffractometry and confirms that all samples are crystallized into a single perovskite phase. Introducing zirconium into the structure causes a reduction in dielectric constant of barium titanate. The optical properties of the films are also investigated. The results indicate that all samples are highly transparent and zirconium reduces the absorption coefficient. Moreover, the band gap energy of barium titanate increases when doped with zirconium and the highest band gap energy of about 3.71 eV along with the lowest dielectric constant of 850 at frequency of 100 kHz are obtained in 15 at.% zirconium-doped sample.


Barium titanate Zirconium doping Sol–gel method Transparent conductive substrate Optical properties 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sharma P, Kumar P, Kundu RS, Juneja JK, Ahlawat N, Punia R (2015) Structural and dielectric properties of substituted barium titanate ceramics for capacitor applications. Ceram Int 41:13425–13432CrossRefGoogle Scholar
  2. 2.
    Vijatovic MM, Bobic JD, Stojanovic BD (2008) History and challenges of barium titanate: part II. Sci Sinter 40:235–244CrossRefGoogle Scholar
  3. 3.
    Gill DM, Conrad CW, Ford G, Wessels BW, Ho ST (1997) Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3. Appl Phys Lett 71:1783–1785CrossRefGoogle Scholar
  4. 4.
    Moura F, Simões AZ, Stojanovic BD, Zaghete MA, Longo E, Varela JA (2008) Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method. J Alloy Compd 462:129–134CrossRefGoogle Scholar
  5. 5.
    Cai W, Fu C, Gao J, Guo Q, Deng X, Zhang C (2011) Preparation and optical properties of barium titanate thin films. Phys B Condens Matter 406:3583–3587CrossRefGoogle Scholar
  6. 6.
    Sharma S, Tomar M, Puri NK, Gupta V (2015) Ultraviolet radiation detection by barium titanate thin films grown by sol-gel hydrothermal method. Sens Actuators A Phys 230:175–181CrossRefGoogle Scholar
  7. 7.
    Cheng BL, Wang C, Wang SY, Lu HB, Zhou YL, Chen ZH, Yang GZ (2005) Dielectric properties of (Ba0.8Sr0.2)(ZrxTi1-x)O3 thin films grown by pulsed-laser deposition. J Eur Ceram Soc 25:2295–2298CrossRefGoogle Scholar
  8. 8.
    Petrovic MMV, Bobic JD, Ramoska T, Banys J, Stojanovic BD (2011) Electrical properties of lanthanum doped barium titanate ceramics. Mater Charact 62:1000–1006CrossRefGoogle Scholar
  9. 9.
    Jiang W, Cai W, Lin Z, Fu C (2013) Effects of Nd-doping on optical and photovoltaic properties of barium titanate thin films prepared by sol-gel method. Mater Res Bull 48:3092–3097CrossRefGoogle Scholar
  10. 10.
    Dang NV, Dung NT, Phong PT, Lee I-J (2015) Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics. Phys B Condens Matter 457:103–107CrossRefGoogle Scholar
  11. 11.
    Herner SB, Selmi FA, Varadan VV, Varadan VK (1993) The effect of various dopants on the dielectric properties of barium strontium titanate. Mater Lett 15:317–324CrossRefGoogle Scholar
  12. 12.
    Lin Y, Wu G, Qin N, Bao D (2012) Structure, dielectric, ferroelectric, and optical properties of (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 thin films prepared by sol–gel method. Thin Solid Films 520:2800–2804CrossRefGoogle Scholar
  13. 13.
    Cai W, Fu C, Gao J, Chen H (2009) Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics. J Alloy Compd 480:870–873CrossRefGoogle Scholar
  14. 14.
    Binhayeeniyi N, Sukvisut P, Thanachayanont C, Muensit S (2010) Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature. Mater Lett 64:305–308CrossRefGoogle Scholar
  15. 15.
    Dixit A, Majumder SB, Dobal PS, Katiyar RS, Bhalla AS (2004) Phase transition studies of sol–gel deposited barium zirconate titanate thin films. Thin Solid Films 447–448:284–288CrossRefGoogle Scholar
  16. 16.
    Dixit A, Agrawal DC, Mohapatra YN, Majumder SB, Katiyar RS (2007) Studies on the dielectric and relaxor behavior of sol-gel derived barium strontium zirconate titanate thin films. Mater Lett 61:3685–3688CrossRefGoogle Scholar
  17. 17.
    Tang XG, Chew K-H, Chan HLW (2004) Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater 52:5177–5183CrossRefGoogle Scholar
  18. 18.
    Yu Z, Guo R, Bhalla AS (2002) Dielectric polarization and strain behavior of Ba(Ti0.92Zr0.08)O3 single crystals. Mater Lett 57:349–354CrossRefGoogle Scholar
  19. 19.
    Louh RF, Hsu YH (2003) Fabrication of barium titanate ferroelectric layers by electrophoretic deposition technique. Mater Chem Phys 79:226–229CrossRefGoogle Scholar
  20. 20.
    Kumari S, Khare A (2015) Pulsed laser deposited barium titanate thin film for tunable optical delay application. Appl Surf Sci 347:619–623CrossRefGoogle Scholar
  21. 21.
    Yoshimura M, Yoo S-E, Hayashi M, Ishizawa N (1989) Preparation of BaTiO3 thin film by hydrothermal electrochemical method. Jpn J Appl Phys 28:L2007–L2009CrossRefGoogle Scholar
  22. 22.
    Shakeri A, Abdizadeh H, Golobostanfard MR (2014) Synthesis and characterization of thick PZT films via sol-gel dip coating method. Appl Surf Sci 314:711–719CrossRefGoogle Scholar
  23. 23.
    Huang XD, Sin JKO, Lai PT (2013) Improved charge-trapping characteristics of BaTiO3 by Zr doping for nonvolatile memory applications. IEEE Electron Device Lett 34:499–501CrossRefGoogle Scholar
  24. 24.
    Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H (2015) Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci Rep 5:9953CrossRefGoogle Scholar
  25. 25.
    Cai W, Fu C, Gao J, Chen X, Zhang Q (2010) Microstructure and dielectric properties of barium zirconate titanate ceramics by two methods. Integr Ferroelectr 113:83–94CrossRefGoogle Scholar
  26. 26.
    Badapanda T, Sarangi S, Behera B, Sahoo PK, Anwar S, Sinha TP, Luz GE, Longo E, Cavalcante LS (2014) Structural refinement, optical and ferroelectric properties of microcrystalline Ba(Zr0.05Ti0.95)O3 perovskite. Curr Appl Phys 14:708–715CrossRefGoogle Scholar
  27. 27.
    Badapanda T, Rout SK, Cavalcante LS, Sczancoski JC, Panigrahi S, Longo E, Li MS (2009) Optical and dielectric relaxor behaviour of Ba(Zr0.25Ti0.75)O3 ceramic explained by means of distorted clusters. J Phys D Appl Phys 42:175414CrossRefGoogle Scholar
  28. 28.
    Hwang JH, Han YH (2001) Electrical properties of cerium-doped BaTiO3. J Am Ceram Soc 84:1750–1754CrossRefGoogle Scholar
  29. 29.
    Rout SK, Badapanda T, Sinha E, Panigrahi P, Barhai PK, Sinha TP (2008) Dielectric and phase transition of BaTi0.6Zr0.4O3 ceramics prepared by a soft chemical route Appl Phys A 91:101–106CrossRefGoogle Scholar
  30. 30.
    Birnie DP, Bendzko NJ (1999) 1H and 13C NMR observation of the reaction of acetic acid with titanium isopropoxide. Mater Chem Phys 59:26–35CrossRefGoogle Scholar
  31. 31.
    Darwish AGA, Badr Y, El Shaarawy M, Shash NMH, Battisha IK (2010) Influence of the Nd3+ ions content on the FTIR and the visible up-conversion luminescence properties of nano-structure BaTiO3, prepared by sol-gel technique. J Alloy Compd 489:451–455CrossRefGoogle Scholar
  32. 32.
    Li W, Li J, Guo J (2003) Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. J Eur Ceram Soc 23:2289–2295CrossRefGoogle Scholar
  33. 33.
    Last JT (1957) Infrared-absorption studies on barium titanate and related materials. Phys Rev 105:1740–1750CrossRefGoogle Scholar
  34. 34.
    Harvey JE (2012) Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles. Opt Eng 51:13402CrossRefGoogle Scholar
  35. 35.
    Bennett HE, Porteus JO (1961) Relation between surface roughness and specular reflectance at normal incidence. J Opt Soc Am 51:123CrossRefGoogle Scholar
  36. 36.
    Maiti T, Alberta E, Guo R, Bhalla AS (2006) The polar cluster like behavior in Ti4+ substituted BaZrO3 ceramics. Mater Lett 60:3861–3865CrossRefGoogle Scholar
  37. 37.
    Maiti T, Guo R, Bhalla AS (2006) The evolution of relaxor behavior in Ti4+ doped BaZrO3 ceramics. J Appl Phys 100:114109CrossRefGoogle Scholar
  38. 38.
    Mohammadi S, Golobostanfard MR, Abdizadeh H (2013) Synthesis and characterization of indium niobium oxide thin films via sol–gel spin coating method. J Mater Sci Technol 29:923–928CrossRefGoogle Scholar
  39. 39.
    Cavalcante LS, Longo VM, Zampieri M, Espinosa JWM, Pizani PS, Sambrano JR, Varela JA, Longo E, Simões ML, Paskocimas CA (2008) Experimental and theoretical correlation of very intense visible green photoluminescence in BaZrO3 powders. J Appl Phys 103:063527CrossRefGoogle Scholar
  40. 40.
    Roy SC, Sharma GL, Bhatnagar MC (2007) Large blue shift in the optical band-gap of sol–gel derived Ba0.5Sr0.5TiO3 thin films. Solid State Commun 141:243–247CrossRefGoogle Scholar
  41. 41.
    Mohammadi S, Abdizadeh H, Golobostanfard MR (2013) Opto-electronic properties of molybdenum doped indium tin oxide nanostructured thin films prepared via sol-gel spin coating. Ceram Int 39:6953–6961CrossRefGoogle Scholar
  42. 42.
    Wan X, Luo H, Wang J, Chan HLW, Choy CL (2004) Investigation on optical transmission spectra of (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals. Solid State Commun 129:401–405CrossRefGoogle Scholar
  43. 43.
    Sanna S, Thierfelder C, Wippermann S, Sinha TP, Schmidt WG (2011) Barium titanate ground- and excited-state properties from first-principles calculations. Phys Rev B 83:1–9Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aryan Kheyrdan
    • 1
  • Hossein Abdizadeh
    • 1
    • 2
  • Amid Shakeri
    • 1
  • Mohammad Reza Golobostanfard
    • 1
  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Center of Excellence for High Performance MaterialsUniversity of TehranTehranIran

Personalised recommendations