Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 206–216 | Cite as

A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • 100 Downloads

Abstract

Gamma-ray irradiation assisted polyacrylamide gel route was used to prepare CoAl2O4 nanoblue pigments. In this route, citric acid was used as a carboxyl and hydroxyl type chelating agent. The phase purity, morphology, and optical and fluorescence properties of as-prepared samples were analyzed via X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometer, transmission electron microscopy (TEM), UV–Visible spectrophotometer, and a confocal Raman system. XRD analysis indicates that the xerogel sintered at relatively low temperature (500 °C) to obtain single phase CoAl2O4 nanopowders. The primary crystal of CoAl2O4 nanoblue pigment is only 28 nm characterized by TEM, which is more likely to be realized with high uniformity than that the CoAl2O4 nanopowders prepared by conventional polyacrylamide gel route. Optical properties of CoAl2O4 nanoblue pigment shows that the optical energy gap (Eg) of nanoblue pigment increases with the decrease of crystallite size. The CIE parameter of CoAl2O4 nanoblue pigment indicates that a different sintering temperature causes a variation in the color of nanoparticles. The fluorescence spectra show that a major blue emission band around 400 nm and a weaker side band located at 430 nm are observed when the excitation wavelength is 325 nm. The chelation mechanism and fluorescence mechanism of the CoAl2O4 nanoblue pigment have been analyzed based on the experimental results.

A cubic nano-CoAl2O4 pigments were synthesized by γ-ray irradiation assisted polyacrylamide gel route. The nano-CoAl2O4 pigments with high uniformity than that the CoAl2O4 nanopowders prepared by conventional polyacrylamide gel route. The SAED pattern revealed that the CoAl2O4 nanoparticles possess interplanar spacing of 2.8651, 2.4434, 2.0258, 1.5586, 1.4327, 1.3657, and 1.1549 Å corresponding to the (220), (311), (400), (511), (440), (531), and (444) planes, respectively. The UV–Vis absorption spectrum shows three obvious absorption peaks at 551, 590, and 628 nm and the CIE parameter is consistent with the real photos.

Keywords

Polyacrylamide gel route CoAl2O4 Nanoblue pigment Chelation mechanism Fluorescence mechanism 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51662027, and 61540043).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jafari M, Hassanzadeh-Tabrizi SA, Ghashang M, Pournajaf R (2014) Ceram Int 40:11877–11881CrossRefGoogle Scholar
  2. 2.
    Bulte JWM, Kraitchman DL (2004) NMR Biomed 17:484–499CrossRefGoogle Scholar
  3. 3.
    Zayat M, Levy D (2000) Chem Mater 12:2763–2769CrossRefGoogle Scholar
  4. 4.
    Son SJ, Reichel J, He B, Schuchman M, Lee SB (2005) J Am Chem Soc 127:7316–7317CrossRefGoogle Scholar
  5. 5.
    Basak J, Hardia N, Saxena S, Dixit R, Dwivedi R, Bhadauria S, Prasad R (2007) Ind Eng Chem Res 46:7039–7044CrossRefGoogle Scholar
  6. 6.
    de Herval LKS, Tuncer Arslanlar Y, Ayvacikli M, Iikawa F, Nobrega JA, Pizani PS, Galvão Gobato Y, Can N, Henini M, de Godoy MPF (2015) J Lumin 163:17–20CrossRefGoogle Scholar
  7. 7.
    Yoon S, Bierwagen J, Trottmann M, Walfort B, Gartmann N, Weidenkaff A, Hagemann H, Pokrant S (2015) J Lumin 167:126–131CrossRefGoogle Scholar
  8. 8.
    Ji L, Tang S, Zeng HC, Lin J, Tan KL (2001) Appl Catal A 207:247–255CrossRefGoogle Scholar
  9. 9.
    Melo DMA, Cunha JD, Fernandes GDG, Bernardi MI, Melo MAF, Martinelli AE (2003) Mater Res Bull 38:1559–1564CrossRefGoogle Scholar
  10. 10.
    Li W, Li J, Guo J (2003) J Eur Ceram Soc 23:2289–2295CrossRefGoogle Scholar
  11. 11.
    Otero Area´n CO, Mentruit MP, Platero EE, Xamena FXL, Parra JB (1999) Mater Lett 39:22–27CrossRefGoogle Scholar
  12. 12.
    Merikhi J, Jungk HO, Feldmann CJ (2000) J Mater Chem 10:1311–1314CrossRefGoogle Scholar
  13. 13.
    Stangar UL, Orel B, Krajnc M (2003) J Sol Gel Sci Technol 26:771–775CrossRefGoogle Scholar
  14. 14.
    Manikandan A, Durka M, Amutha Selvi M, Arul Antony S (2016) J Nanosci Nanotechno 16:448–456CrossRefGoogle Scholar
  15. 15.
    Gama L, Ribeiro MA, Barros BS, Kiminami RHA, Weber IT, Costa ACFM (2009) J Alloy Comp 483:453–455CrossRefGoogle Scholar
  16. 16.
    Gholami T, Salavati-Niasari M, Varshoy S (2016) J Hydrog Energ 41:9418–9426CrossRefGoogle Scholar
  17. 17.
    Ahmed IS (2011) Mater Res Bull 46:2548–2553CrossRefGoogle Scholar
  18. 18.
    Torkian L, Daghighi M (2014) Adv Powder Technol 25:739–744CrossRefGoogle Scholar
  19. 19.
    Chandradass J, Balasubramanian M, Kim KH (2010) J Alloy Comp 506:395–399CrossRefGoogle Scholar
  20. 20.
    Duan XL, Pan M, Yu FP, Yuan DR (2011) J Alloy Comp 509:1079–1083CrossRefGoogle Scholar
  21. 21.
    Kurajica S, Popovic J, Tkalcec E, Grzeta B, Mandic V (2012) Mater Chem Phys 135:587–593CrossRefGoogle Scholar
  22. 22.
    Xi XL, Nie ZR, Ma LW, Li L, Xu XY, Zuo TY (2012) Powder Technol 226:114–116CrossRefGoogle Scholar
  23. 23.
    Aly KA, Khalil NM, Algamal Y, Saleem QMA (2016) J Alloy Comp 676:606–612CrossRefGoogle Scholar
  24. 24.
    Peymannia M, Soleimani-Gorgani A, Ghahari M, Jalili M (2015) Ceram Int 41:9115–9121CrossRefGoogle Scholar
  25. 25.
    Peymannia M, Soleimani-Gorgani A, Ghahari M, Najafi F (2014) J Eur Ceram Soc 34:3119–3126CrossRefGoogle Scholar
  26. 26.
    Wang QK, Chang QB, Wang YQ, Wang X, Zhou JE (2016) Mater Lett 173:64–67CrossRefGoogle Scholar
  27. 27.
    Chen ZZ, Shi EW, Li WJ, Zheng YQ, Zhong WZ (2002) Mater Lett 55:281–284CrossRefGoogle Scholar
  28. 28.
    Jafari M, Hassanzadeh-Tabrizi SA (2014) Powder Technol 266:236–239CrossRefGoogle Scholar
  29. 29.
    Zhao X, Yang H, Cui Z, Li R, Feng W (2017) Mater Technol 32:870–880CrossRefGoogle Scholar
  30. 30.
    Saket-Oskoui M, Khatamian M, Nofouzi K, Yavari A (2014) Adv Powder Technol 25:1634–1642CrossRefGoogle Scholar
  31. 31.
    Di LJ, Yang H, Xian T, Chen XJ (2017) Materials 10:1118CrossRefGoogle Scholar
  32. 32.
    Zheng CX, Yang H, Cui ZM, Zhang HM, Wang XX (2017) Nanoscale Res Lett 12:608CrossRefGoogle Scholar
  33. 33.
    Wang SF, Lv HB, Zhou XS, Fu YQ, Zu XT (2014) Nanosci Nanotech Lett 6:758–771CrossRefGoogle Scholar
  34. 34.
    Sin A, Odier P (2000) Adv Mater 12:649–652CrossRefGoogle Scholar
  35. 35.
    Wang SF, Li DM, Yang CQ, Sun GA, Zhang J, Xia YH, Xie CM, Yang GX, Zhou M, Liu W (2017) J Sol Gel Sci Technol 84:169–179CrossRefGoogle Scholar
  36. 36.
    Wang F, Yang H, Zhang YC (2018) Mat Sci Semicon Proc 73:58–66CrossRefGoogle Scholar
  37. 37.
    Gabrovska M, Crisan D, Stanica N, Nikolova D, Bilyarska L, Crisan M, Edreva-Kardjieva R (2014) Rev Roum Chim 59:445–450Google Scholar
  38. 38.
    Renouprez AJ (1992) Acta Phys Pol Α 82:295–308CrossRefGoogle Scholar
  39. 39.
    Ianos R, Borcǎnescu S, Lazaǎu R (2014) Chem Eng J 240:260–263CrossRefGoogle Scholar
  40. 40.
    Salavati-Niasari M, Farhadi-Khouzani M, Davar F (2009) J Sol Gel Sci Technol 52:321–327CrossRefGoogle Scholar
  41. 41.
    Mindru I, Marinescu G, Gingasu D, Patron L, Ghica C, Giurginca M (2010) Mater Chem Phys 122:491–497CrossRefGoogle Scholar
  42. 42.
    Ahmed IS, Dessouki HA, Ali AA (2008) Spectrochim Acta A 71:616–620CrossRefGoogle Scholar
  43. 43.
    de Souza LKC, Zamian JR, daRocha Filho GN, Soledade LEB, dos Santos IMG, Souza AG, Scheller T, Angelica RS, da Costa CEF (2009) Dyes Pigments 81:187–192CrossRefGoogle Scholar
  44. 44.
    El Habra N, Crociani L, Sada C, Zanella P, Casarin M, Rossetto G, Carta G, Paolucci G (2007) Chem Mater 19:3381–3386CrossRefGoogle Scholar
  45. 45.
    Rangappa D, Naka T, Kondo A, Ishii M, Kobayashi T, Adschiri T (2007) J Am Chem Soc 129:11061–11066CrossRefGoogle Scholar
  46. 46.
    Agilandeswari K, Ruban Kumar A (2015) AIP Conf Proc 1665:120022-1–120022-3.  https://doi.org/10.1063/1.4918129 Google Scholar
  47. 47.
    Ahmad F (2014) J Alloy Comp 586:605–610CrossRefGoogle Scholar
  48. 48.
    Zheng WC, Wu XX, Fang W, Mei Y (2007) Spectrochim Acta A 66:1295–1299CrossRefGoogle Scholar
  49. 49.
    Ho C, Yu JC, Kwong T, Mak AC, Lai S (2005) Chem Mater 17:4514–4522CrossRefGoogle Scholar
  50. 50.
    Jayasree S, Manikandan A, Mohideen AM, Barathiraja C, Antony SA (2015) Adv Sci Eng Med 7:672–682CrossRefGoogle Scholar
  51. 51.
    Pelagotti A, Pezzati L, Bevilacqua N, Vascotto V, Reillon V, Daffara C (2005) A study of UV fluorescence emission of painting materials. ‘05–8th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage. Lecce, CD-ROM, A97, 2005Google Scholar
  52. 52.
    Alves E, Marques C, da Silva RC, Monteiro T, Soares J, McHargue C, Ononye LC, Allard LF (2003) Nucl Instrum Meth B 207:55–62CrossRefGoogle Scholar
  53. 53.
    Monteiro T, Soares MJ, Santos L, Boemare C, Cascalheira J, Alves LC, Alves E (2002) Radiat Eff Defect S 157:1117–1122CrossRefGoogle Scholar
  54. 54.
    Kuleshov NNV, Mikhailov VP, Scherbitsky VG, Prokoshin PV, Yumashev KV (1993) J Lumin 55:265–269CrossRefGoogle Scholar
  55. 55.
    Ahn KS, Yan YF, Kang MS, Kim JY, Shet S, Wang HL, Turner J, Al-Jassim M (2009) Appl Phys Lett 95:022116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouChina
  3. 3.Science and Technology on Vacuum Technology and Physics LaboratoryLanzhou Institute of PhysicsLanzhouChina
  4. 4.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina
  5. 5.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina

Personalised recommendations