Skip to main content
Log in

A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Gamma-ray irradiation assisted polyacrylamide gel route was used to prepare CoAl2O4 nanoblue pigments. In this route, citric acid was used as a carboxyl and hydroxyl type chelating agent. The phase purity, morphology, and optical and fluorescence properties of as-prepared samples were analyzed via X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometer, transmission electron microscopy (TEM), UV–Visible spectrophotometer, and a confocal Raman system. XRD analysis indicates that the xerogel sintered at relatively low temperature (500 °C) to obtain single phase CoAl2O4 nanopowders. The primary crystal of CoAl2O4 nanoblue pigment is only 28 nm characterized by TEM, which is more likely to be realized with high uniformity than that the CoAl2O4 nanopowders prepared by conventional polyacrylamide gel route. Optical properties of CoAl2O4 nanoblue pigment shows that the optical energy gap (Eg) of nanoblue pigment increases with the decrease of crystallite size. The CIE parameter of CoAl2O4 nanoblue pigment indicates that a different sintering temperature causes a variation in the color of nanoparticles. The fluorescence spectra show that a major blue emission band around 400 nm and a weaker side band located at 430 nm are observed when the excitation wavelength is 325 nm. The chelation mechanism and fluorescence mechanism of the CoAl2O4 nanoblue pigment have been analyzed based on the experimental results.

A cubic nano-CoAl2O4 pigments were synthesized by γ-ray irradiation assisted polyacrylamide gel route. The nano-CoAl2O4 pigments with high uniformity than that the CoAl2O4 nanopowders prepared by conventional polyacrylamide gel route. The SAED pattern revealed that the CoAl2O4 nanoparticles possess interplanar spacing of 2.8651, 2.4434, 2.0258, 1.5586, 1.4327, 1.3657, and 1.1549 Å corresponding to the (220), (311), (400), (511), (440), (531), and (444) planes, respectively. The UV–Vis absorption spectrum shows three obvious absorption peaks at 551, 590, and 628 nm and the CIE parameter is consistent with the real photos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jafari M, Hassanzadeh-Tabrizi SA, Ghashang M, Pournajaf R (2014) Ceram Int 40:11877–11881

    Article  Google Scholar 

  2. Bulte JWM, Kraitchman DL (2004) NMR Biomed 17:484–499

    Article  Google Scholar 

  3. Zayat M, Levy D (2000) Chem Mater 12:2763–2769

    Article  Google Scholar 

  4. Son SJ, Reichel J, He B, Schuchman M, Lee SB (2005) J Am Chem Soc 127:7316–7317

    Article  Google Scholar 

  5. Basak J, Hardia N, Saxena S, Dixit R, Dwivedi R, Bhadauria S, Prasad R (2007) Ind Eng Chem Res 46:7039–7044

    Article  Google Scholar 

  6. de Herval LKS, Tuncer Arslanlar Y, Ayvacikli M, Iikawa F, Nobrega JA, Pizani PS, Galvão Gobato Y, Can N, Henini M, de Godoy MPF (2015) J Lumin 163:17–20

    Article  Google Scholar 

  7. Yoon S, Bierwagen J, Trottmann M, Walfort B, Gartmann N, Weidenkaff A, Hagemann H, Pokrant S (2015) J Lumin 167:126–131

    Article  Google Scholar 

  8. Ji L, Tang S, Zeng HC, Lin J, Tan KL (2001) Appl Catal A 207:247–255

    Article  Google Scholar 

  9. Melo DMA, Cunha JD, Fernandes GDG, Bernardi MI, Melo MAF, Martinelli AE (2003) Mater Res Bull 38:1559–1564

    Article  Google Scholar 

  10. Li W, Li J, Guo J (2003) J Eur Ceram Soc 23:2289–2295

    Article  Google Scholar 

  11. Otero Area´n CO, Mentruit MP, Platero EE, Xamena FXL, Parra JB (1999) Mater Lett 39:22–27

    Article  Google Scholar 

  12. Merikhi J, Jungk HO, Feldmann CJ (2000) J Mater Chem 10:1311–1314

    Article  Google Scholar 

  13. Stangar UL, Orel B, Krajnc M (2003) J Sol Gel Sci Technol 26:771–775

    Article  Google Scholar 

  14. Manikandan A, Durka M, Amutha Selvi M, Arul Antony S (2016) J Nanosci Nanotechno 16:448–456

    Article  Google Scholar 

  15. Gama L, Ribeiro MA, Barros BS, Kiminami RHA, Weber IT, Costa ACFM (2009) J Alloy Comp 483:453–455

    Article  Google Scholar 

  16. Gholami T, Salavati-Niasari M, Varshoy S (2016) J Hydrog Energ 41:9418–9426

    Article  Google Scholar 

  17. Ahmed IS (2011) Mater Res Bull 46:2548–2553

    Article  Google Scholar 

  18. Torkian L, Daghighi M (2014) Adv Powder Technol 25:739–744

    Article  Google Scholar 

  19. Chandradass J, Balasubramanian M, Kim KH (2010) J Alloy Comp 506:395–399

    Article  Google Scholar 

  20. Duan XL, Pan M, Yu FP, Yuan DR (2011) J Alloy Comp 509:1079–1083

    Article  Google Scholar 

  21. Kurajica S, Popovic J, Tkalcec E, Grzeta B, Mandic V (2012) Mater Chem Phys 135:587–593

    Article  Google Scholar 

  22. Xi XL, Nie ZR, Ma LW, Li L, Xu XY, Zuo TY (2012) Powder Technol 226:114–116

    Article  Google Scholar 

  23. Aly KA, Khalil NM, Algamal Y, Saleem QMA (2016) J Alloy Comp 676:606–612

    Article  Google Scholar 

  24. Peymannia M, Soleimani-Gorgani A, Ghahari M, Jalili M (2015) Ceram Int 41:9115–9121

    Article  Google Scholar 

  25. Peymannia M, Soleimani-Gorgani A, Ghahari M, Najafi F (2014) J Eur Ceram Soc 34:3119–3126

    Article  Google Scholar 

  26. Wang QK, Chang QB, Wang YQ, Wang X, Zhou JE (2016) Mater Lett 173:64–67

    Article  Google Scholar 

  27. Chen ZZ, Shi EW, Li WJ, Zheng YQ, Zhong WZ (2002) Mater Lett 55:281–284

    Article  Google Scholar 

  28. Jafari M, Hassanzadeh-Tabrizi SA (2014) Powder Technol 266:236–239

    Article  Google Scholar 

  29. Zhao X, Yang H, Cui Z, Li R, Feng W (2017) Mater Technol 32:870–880

    Article  Google Scholar 

  30. Saket-Oskoui M, Khatamian M, Nofouzi K, Yavari A (2014) Adv Powder Technol 25:1634–1642

    Article  Google Scholar 

  31. Di LJ, Yang H, Xian T, Chen XJ (2017) Materials 10:1118

    Article  Google Scholar 

  32. Zheng CX, Yang H, Cui ZM, Zhang HM, Wang XX (2017) Nanoscale Res Lett 12:608

    Article  Google Scholar 

  33. Wang SF, Lv HB, Zhou XS, Fu YQ, Zu XT (2014) Nanosci Nanotech Lett 6:758–771

    Article  Google Scholar 

  34. Sin A, Odier P (2000) Adv Mater 12:649–652

    Article  Google Scholar 

  35. Wang SF, Li DM, Yang CQ, Sun GA, Zhang J, Xia YH, Xie CM, Yang GX, Zhou M, Liu W (2017) J Sol Gel Sci Technol 84:169–179

    Article  Google Scholar 

  36. Wang F, Yang H, Zhang YC (2018) Mat Sci Semicon Proc 73:58–66

    Article  Google Scholar 

  37. Gabrovska M, Crisan D, Stanica N, Nikolova D, Bilyarska L, Crisan M, Edreva-Kardjieva R (2014) Rev Roum Chim 59:445–450

    Google Scholar 

  38. Renouprez AJ (1992) Acta Phys Pol Α 82:295–308

    Article  Google Scholar 

  39. Ianos R, Borcǎnescu S, Lazaǎu R (2014) Chem Eng J 240:260–263

    Article  Google Scholar 

  40. Salavati-Niasari M, Farhadi-Khouzani M, Davar F (2009) J Sol Gel Sci Technol 52:321–327

    Article  Google Scholar 

  41. Mindru I, Marinescu G, Gingasu D, Patron L, Ghica C, Giurginca M (2010) Mater Chem Phys 122:491–497

    Article  Google Scholar 

  42. Ahmed IS, Dessouki HA, Ali AA (2008) Spectrochim Acta A 71:616–620

    Article  Google Scholar 

  43. de Souza LKC, Zamian JR, daRocha Filho GN, Soledade LEB, dos Santos IMG, Souza AG, Scheller T, Angelica RS, da Costa CEF (2009) Dyes Pigments 81:187–192

    Article  Google Scholar 

  44. El Habra N, Crociani L, Sada C, Zanella P, Casarin M, Rossetto G, Carta G, Paolucci G (2007) Chem Mater 19:3381–3386

    Article  Google Scholar 

  45. Rangappa D, Naka T, Kondo A, Ishii M, Kobayashi T, Adschiri T (2007) J Am Chem Soc 129:11061–11066

    Article  Google Scholar 

  46. Agilandeswari K, Ruban Kumar A (2015) AIP Conf Proc 1665:120022-1–120022-3. https://doi.org/10.1063/1.4918129

    Google Scholar 

  47. Ahmad F (2014) J Alloy Comp 586:605–610

    Article  Google Scholar 

  48. Zheng WC, Wu XX, Fang W, Mei Y (2007) Spectrochim Acta A 66:1295–1299

    Article  Google Scholar 

  49. Ho C, Yu JC, Kwong T, Mak AC, Lai S (2005) Chem Mater 17:4514–4522

    Article  Google Scholar 

  50. Jayasree S, Manikandan A, Mohideen AM, Barathiraja C, Antony SA (2015) Adv Sci Eng Med 7:672–682

    Article  Google Scholar 

  51. Pelagotti A, Pezzati L, Bevilacqua N, Vascotto V, Reillon V, Daffara C (2005) A study of UV fluorescence emission of painting materials. ‘05–8th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage. Lecce, CD-ROM, A97, 2005

  52. Alves E, Marques C, da Silva RC, Monteiro T, Soares J, McHargue C, Ononye LC, Allard LF (2003) Nucl Instrum Meth B 207:55–62

    Article  Google Scholar 

  53. Monteiro T, Soares MJ, Santos L, Boemare C, Cascalheira J, Alves LC, Alves E (2002) Radiat Eff Defect S 157:1117–1122

    Article  Google Scholar 

  54. Kuleshov NNV, Mikhailov VP, Scherbitsky VG, Prokoshin PV, Yumashev KV (1993) J Lumin 55:265–269

    Article  Google Scholar 

  55. Ahn KS, Yan YF, Kang MS, Kim JY, Shet S, Wang HL, Turner J, Al-Jassim M (2009) Appl Phys Lett 95:022116

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51662027, and 61540043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Yang or Shifa Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • CoAl2O4 nanoblue pigments were prepared by γ-ray irradiation assisted polyacrylamide gel route.

  • CoAl2O4 nanoblue pigments with high uniformity.

  • Sintering temperature causes a variation in the color and Eg value of CoAl2O4 nanoparticles.

  • The chelation and fluorescence mechanisms of the CoAl2O4 nanoblue pigment have been analyzed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Yang, H., Wang, S. et al. A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties. J Sol-Gel Sci Technol 86, 206–216 (2018). https://doi.org/10.1007/s10971-018-4609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4609-y

Keywords

Navigation