Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 94–103 | Cite as

Urea-assisted fabrication of Fe3O4@ZnO@Au composites for the catalytic photodegradation of Rhodamine-B

  • Robes Alves da Silva
  • Marcos José Jacinto
  • Virginia Claudia Silva
  • Debora Cecília Cabana
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


A new chemical approach for the fabrication of Fe3O4 embedded ZnO magnetic semicondutctor composite is reported. The method consists in increasing the pH of the synthesis solution by the thermal decomposition of urea instead of using common alkaline agents, such as NaOH and NH4OH. The material (Fe3O4@ZnO) was used as a platform for the fabrication of highly dispersed gold nanoparticles (~5 nm). The catalytic efficiency of the material, Fe3O4@ZnO@Au, was tested in the photodegradation of Rhodamine-B solutions, and prominent catalytic efficiency, stability, and recycling were achieved. A single portion of the catalyst could be used up to five times without significant loss of activity and its photodegradation efficiency was considered high even after the 12th cycle (56%). Catalyst separation after each batch could be easily achieved because of the intrinsic magnetic property of the material. Leaching monitoring of free Zn species during the fabrication of the catalyst suggests that the use of urea decreased substantially the formation of non-magnetic-semiconducting species and provided a higher mass yield of the magnetic composite compared to an analogous protocol using NaOH. The catalyst was also characterized by detailed structural and chemical analyses, such as transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometer (VSM).


Magnetic composites Photodegradation Nanomaterials Gold nanoparticles 



The authors are grateful to Fundação de Amparo a Pesquisa do Estado de Mato Grosso (FAPEMAT) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support, and indebted to LNNano-Brazil, LME-DEMA-UFSCAR and LMC-UnB for XPS, TEM and BET analyses, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fageria P, Gangopadhyay S, Pande S (2014) Rsc Adv 4(48):24962–24972CrossRefGoogle Scholar
  2. 2.
    Nagaraja R, Kottam N, Girija CR, Nagabhushana BM (2012) Powder Technol 215:91–97CrossRefGoogle Scholar
  3. 3.
    Singh S, Barick KC, Bahadur D (2013) J Mater Chem A 1:3325–3333CrossRefGoogle Scholar
  4. 4.
    Zhang K, Zhou W, Zhang X, Qu Y, Wang L, Hu W, Tian G (2016) RSC Adv 6:50506–50512CrossRefGoogle Scholar
  5. 5.
    Chamjangali MA, Boroumand S (2013) J Braz Chem Soc 24(8):1329–1338Google Scholar
  6. 6.
    Hernández S, Hidalgo D, Sacco A, Chiodoni A, Lamberti A, Cauda V, Saracco G (2015) Phys Chem Chem Phys 17(12):7775–7786CrossRefGoogle Scholar
  7. 7.
    Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P (2006) Appl Catal B-Environ 3:305–312CrossRefGoogle Scholar
  8. 8.
    Alshammari A, Bagabas A, Assulami M (2014) Photodegradation of rhodamine B over semiconductor supported gold nanoparticles: The effect of semiconductor support identity. Arab J Chem.
  9. 9.
    Hu X, Xu Q, Ge C, Su N, Zhang J, Huang H, Cheng J (2016) Nanotechnology 28(4):045604CrossRefGoogle Scholar
  10. 10.
    Collard X, El Hajj M, Su BL, Aprile C (2014) Micro Mesopor Mat 184:90–96CrossRefGoogle Scholar
  11. 11.
    Wang F, Liang L, Shi L, Liu M, Sun J (2014) Dalton T 43:16441–16449CrossRefGoogle Scholar
  12. 12.
    Yang L, Wu H, Jia J, Ma B, Li J (2017) Micro Mesopor Mat 253:151–159CrossRefGoogle Scholar
  13. 13.
    Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Appl Catal A-Gen 338(1):52–57CrossRefGoogle Scholar
  14. 14.
    Nguyen VC, Nguyen NLG, Pho QH (2015) ADV Nat Sci-Nanosc 6(3):035001CrossRefGoogle Scholar
  15. 15.
    Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891–895CrossRefGoogle Scholar
  16. 16.
    Kandula S, Jeevanandam P (2015) RSC Adv 5(7):5295–5306CrossRefGoogle Scholar
  17. 17.
    Farrokhi M, Hosseini SC, Yang JK, Shirzad-Siboni M (2014) Water Air Soil Pollut 225(9):2113CrossRefGoogle Scholar
  18. 18.
    Teng Z, Li J, Yan F, Zhao R, Yang W (2009) J Mater Chem 19:1811–1815CrossRefGoogle Scholar
  19. 19.
    Worawong A, Jutarosaga T, Onreabroy W (2014) Adv Mat Res 979:208–211Google Scholar
  20. 20.
    Devaraj N K, Ong B H (2011) In AIP Conference Proceedings 1328(1):288-290Google Scholar
  21. 21.
    Lu J, Wang H, Peng D, Chen T, Dong S, Chang Y (2016) Phys E 78:41–48CrossRefGoogle Scholar
  22. 22.
    Peng C, Liu Y (2013) Appl Phys A 111:1151–1157CrossRefGoogle Scholar
  23. 23.
    Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441–2449CrossRefGoogle Scholar
  24. 24.
    Hosseini-Sarvari M, Khanivar A, Moeini F (2015) J Mater Sci 50(8):3065–3074CrossRefGoogle Scholar
  25. 25.
    Olteanu NL, Rogozea EA, Popescu SA, Petcu AR, Lazăr CA, Meghea A, Mihaly M (2016) J Mol Catal A-Chem 414:148–159CrossRefGoogle Scholar
  26. 26.
    Pauporte T, Rathouský J (2007) J Phys Chem C 111:7639–7644CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UFMT- Departamento de Química. Av. Fernando Corrêa da CostaUniversidade Federal de Mato GrossoCuiabáBrazil

Personalised recommendations