Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 42–50 | Cite as

Sol–gel based thermally stable mesoporous TiO2 nanomatrix for fiber optic pH sensing

  • Shumaila Islam
  • Hazri Bakhtiar
  • Noriah Bidin
  • Saira Riaz
  • Shahzad Naseem
Original Paper: Devices based on sol-gel or hybrid materials


Thermally stable acid catalyzed mesoporous titania (TiO2) nanomatrices are obtained by sol–gel method for fiber optic pH sensing. These synthesized nanoparticles are annealed at 300 °C, at two time intervals i.e., 1 h and 2 h, characterized with several analytical techniques such as FE-SEM/EDS, AFM, XRD, FTIR, TGA, and Brunauer–Emmett–Teller (BET) analysis. Microscopic analysis shows that synthesized nanoparticles have crack-free, dense and homogeneous surface with low surface roughness (4.4–5.9 nm). EDS mapping confirms the uniform distribution of Ti in all samples. XRD findings revealed the TiO2 anatase phase. BET analysis shows that the mesoporous synthesized TiO2 nanoparticles have surface areas 169 m2/g and average pore diameter 39.2 Å. However, surface area is decreased to 113 and 102 m2/g and average pore diameter increased up to 62.36 and 68.18 Å after 1 h and 2 h heat treatment, respectively. Furthermore, the sensing activity of phenolphthalein (phph) doped mesoporous TiO2 nanoparticles/matrix is found to be high at pH 12 without any leaching/cracking.


Sol-gel method Cracks allevation Mesoporous TiO2 nanoparticles Optical properties Fiber optic sensing activity 



The authors like to express their gratitude to the Government of Malaysia through grant FRGS vote 03E89 for the financial support in this project. Thanks are also due to UTM through RMC for awarding the Postdoctoral fellowship to the first author.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Monkowski AJ, Morrill A, MacDonald NC (2006) Arrayed nanostructured titania functionalized for hydrogen detection. ECS Trans 3(10):493–501CrossRefGoogle Scholar
  2. 2.
    Hasan MM, Haseeb MA, Saidur R, Masjuki HH (2008) Effects of annealing treatment on optical properties of anatase TiO2 thin films. Int J Chem Biol Eng 1(2):92–96Google Scholar
  3. 3.
    Vardan G, Elisabetta C, Camilla B, Andrea P, Matteo F, Nicola P, Elza B, Mariangela B, Guido F, Giorgio S (2015) Large surface area biphase titania for chemical sensing. Sens Actuators B 209:1091–1096CrossRefGoogle Scholar
  4. 4.
    Liu S, Chen X, Chen X (2006) Preparation of N-doped visible-light response nanosize TiO2 photocatalyst using the acid-catalyzed hydrolysis method. Chin J Catal 27:697–702CrossRefGoogle Scholar
  5. 5.
    Kim CK, Nakaso K, Bin X, Okuyama K, Shimada M (2005) A new observation on the phase transformation of TiO2 nanoparticles produced by a CVD method. Aerosol Sci Technol 39:104–112CrossRefGoogle Scholar
  6. 6.
    Acosta DR, Martınez A, Magana CR, Ortega JM (2005) Electron and Atomic Force Microscopy studies of photocatalytic titanium dioxide thin films deposited by DC magnetron sputtering. Thin Solid Films 490:112–117CrossRefGoogle Scholar
  7. 7.
    Hu Y, Tsai HL, Haung CL (2003) Phase transformation of precipitated TiO2 nanoparticles. Mater Sci Eng A 344:209–214CrossRefGoogle Scholar
  8. 8.
    Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek K, Jirkovsky J, Petrova N (2006) Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J Mater Chem 16:1709–1716CrossRefGoogle Scholar
  9. 9.
    Yao N, Yeung KL (2008) Anomalous crystal growth on TiO2 thin film induced by the AFM tip. Ind Eng Chem Res 47:9195–9200CrossRefGoogle Scholar
  10. 10.
    Pecchi G, Ryes P, Lopez T, Gomez R, Moreno A, Fierro JLG (2002) Effect Of chlorine precursor in surface and catalytic properties of Fe/Tio2 catalysts. Bol Soc Chil Quim 47:191–197Google Scholar
  11. 11.
    Islam S, Bidin N, Riaz S, Krishnan G, Naseem S (2016) Sol–gel based fiber optic pH nanosensor: structural and sensing properties. Sens Actuators A 238:8–18CrossRefGoogle Scholar
  12. 12.
    Fanya I, Monika S, Rolan M, Behnam B, Peter F, Nicholas JG (2011) Strength of interactions between immobilized dye molecules and sol–gel matrices. Analyst 136:807–815CrossRefGoogle Scholar
  13. 13.
    Chris M, Thomas MB, Brian DM (2000) Infuence of the surface polarity of dye-doped sol–gel glass flms on optical ammonia sensor response. Thin Solid Films 368:105–110CrossRefGoogle Scholar
  14. 14.
    Aleksandra L, Ines O, Ivana M, Otto SW (1998) pH optical sensors based on sol–gels: chemical doping versus covalent immobilization. Anal Chim Acta 367(1–3):159–165Google Scholar
  15. 15.
    Paola AD, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts 3:36–73CrossRefGoogle Scholar
  16. 16.
    Samira B, Kamyar S, Sharifah BAH (2013) Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol–gel method J Chem 2013:5848205Google Scholar
  17. 17.
    Othman SH, Rashid SA, Mohd Ghazi TI, Abdullah N (2010) Effect of postdeposition heat treatment on the crystallinity, size, and photocatalytic activity of nanoparticles produced via chemical vapour deposition J Nanomater 2010:10512785CrossRefGoogle Scholar
  18. 18.
    Tabrizi BN (2014) Thermal treatment effect on structural features of mechano-synthesized fluorapatite–titania nanocomposite: a comparative study. J Adv Ceram 3(1):31–42CrossRefGoogle Scholar
  19. 19.
    Nyamukamba P, Tichagwa L, Greyling C (2012) The influence of carbon doping on TiO2 nanoparticle size, surface area, anatase to rutile phase transformation and photocatalytic activity. Mater Sci Forum 712:49–63CrossRefGoogle Scholar
  20. 20.
    Altar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S (2008) Modifier ligands effects on the synthesized TiO2 nanocrystals. J Mater Sci 43:1723–1729CrossRefGoogle Scholar
  21. 21.
    Mathew S, Prasad AK, Benoy T, Rakesh PP, Hari M, Libish TM, Radhakrishnan P, Nampoori VPN, Vallabhan CPG (2012) UV-visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. J Fluoresc 22(6):1563–1569CrossRefGoogle Scholar
  22. 22.
    Ranga RA, Dutta V (2007) Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition. Sol Energy Mater & Sol Cells 91:1075–1080CrossRefGoogle Scholar
  23. 23.
    Islam S, Bidin N, Riaz S, Rahman AR, Naseem S, Marsin MF (2015) Mesoporous SiO2–TiO2 nanocomposite for pH sensing. Sens Actuators B 221:993–1002CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shumaila Islam
    • 1
  • Hazri Bakhtiar
    • 1
  • Noriah Bidin
    • 1
  • Saira Riaz
    • 2
  • Shahzad Naseem
    • 2
  1. 1.Laser Centre, Ibnu Sina Institute for Scientific and Industrial ResearchUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations