Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 51–62 | Cite as

Enhanced lithium electrochemical performance and optical properties of CeO2–SnO2 nanocomposite thin films by transition metal (TM: Ni, Mn, and Co) doping

  • J. Mazloom
  • F. E. Ghodsi
  • F. Z. Tepehan
  • G. G. Tepehan
  • I. Turhan
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)


Undoped and transition metal (TM: Ni, Mn, Co)-doped CeO2–SnO2 nanocomposite thin films were prepared by sol-gel dip coating (SGDC) technique. The grazing incidence X-ray diffraction (GIXRD) patterns indicated that CeO2–SnO2 film has a cubic structure of CeO2 and the crystallinity deteriorated with incorporation of dopant. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) images showed that the surface morphology of the films was affected by TM incorporation. The surface roughness and fractal dimensions of CeO2–SnO2 films increased with doping. The average transmittance of CeO2–SnO2 thin film is found nearly 80% in the visible region and increased with doping. The absorption edge revealed a blue shift toward shorter wavelengths after incorporation of TM ions. The compositional dependence of optical parameters such as refractive index, extinction coefficient, and optical conductivity were also investigated. Cyclic voltammetry measurements showed that ion storage capacity was decreased significantly with increasing scan rate. The undoped and doped CeO2–SnO2 films showed good reversible cycle of intercalation/deintercalation of Li+ ions. The ion storage capacity and electrochemical stability were enhanced with transition metal doping. The Mn-doped CeO2–SnO2 composite thin film had better ion storage capacity rather than other samples due to its special porous morphology. The Li diffusion toward electrode surface was described in terms of self-similar fractal dimension. A quenching in blue-green photoluminescence (PL) intensity of CeO2–SnO2 films was occurred by transition metal doping.


Thin films CeO2–SnO2:TM optical parameters electrochemical properties 



We would like to acknowledge the University of Guilan Research Council for the support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chen C, Wang R, Shen P, Zhao D, Zhang N (2015) Int J Hydrog Energy 40:4830–4839CrossRefGoogle Scholar
  2. 2.
    Qin W, Xu L, Song J, Xing R, Song H (2013) Sens Actuators B 185:231–237CrossRefGoogle Scholar
  3. 3.
    Carvalho JBR, Silva R, Cesarino I, Machado SAS, Eguiluz KIB, Cavalcanti EB, Salazar-Banda GR (2014) Ceram Int 40:13437–13446CrossRefGoogle Scholar
  4. 4.
    Aravinda LS, Udaya Bhat K, Ramachandra Bhat B (2013) Mater Lett 112:158–161CrossRefGoogle Scholar
  5. 5.
    Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Biomaterials 28:4600–4607CrossRefGoogle Scholar
  6. 6.
    Malleshappa J, Nagabhushana H, Sharma SC, Vidya YS, Anantharaju KS, Prashantha SC, Daruka Prasad B, Raja Naika H, Lingaraju K, Surendra BS (2015) Spectrochim Acta A 149:452–462CrossRefGoogle Scholar
  7. 7.
    Wang Z, Pan Y, Song Y, Cui H (2009) J Sol-Gel Sci Technol 50:261–266CrossRefGoogle Scholar
  8. 8.
    Stangar UL, Opara U, Orel B (1997) J Sol-Gel Sci Technol 8:751–758CrossRefGoogle Scholar
  9. 9.
    Khosousi Sani Z, Ghodsi FE, Mazloom J (2016) Eur Phys J Appl Phys 74:10302–10308CrossRefGoogle Scholar
  10. 10.
    Bhosale AK, Tarwal NL, Shinde PS, Patil RS, Kadam PM, Barman SR, Patil PS (2009) Solid State Ion 180:1324–1331CrossRefGoogle Scholar
  11. 11.
    Khosousi Sani Z, Ghodsi FE, Mazloom J (2017) J Sol-Gel Sci Technol 82:643–653CrossRefGoogle Scholar
  12. 12.
    Verma A, Samanta SB, Bakhshi AK, Agnihotry SA (2004) Solid State Ion 171:81–90CrossRefGoogle Scholar
  13. 13.
    Assis LMN, Ponez L, Januszko A, Grudzinski K, Pawlicka A (2013) Electrochim Acta 111:299–304CrossRefGoogle Scholar
  14. 14.
    Khosousi Sani Z, Ghodsi FE, Mazloom J (2017) J Appl Phys A 123:121CrossRefGoogle Scholar
  15. 15.
    Berton MAC, Avellaneda CO, Bulhoes LOS (2003) Sol Energy Mater Sol Cells 80:443–449CrossRefGoogle Scholar
  16. 16.
    Bhosale AK, Shinde PS, Tarwal NL, Kadam PM, Mali SS, Patil PS (2010) Sol Energy Mater Sol Cells 94:781–787CrossRefGoogle Scholar
  17. 17.
    Veszelei M, Stromme Mattsson M, Kullman L, Azens A, Granqvist CG (1999) Sol Energy Mater Sol Cells 56:223–230CrossRefGoogle Scholar
  18. 18.
    Bhosale AK, Shinde PS, Tarwal NL, Pawar RC, Kadam PM, Patil PS (2010) Electrochim Acta 55:1900–1906CrossRefGoogle Scholar
  19. 19.
    Skofic IK, Gomilsek JP, Pihlar B, Kodre A, Bukovec N (2011) Sol Energy Mater Sol Cells 95:779–785CrossRefGoogle Scholar
  20. 20.
    Malini DR, Sanjeeviraj C (2013) Electrochim Acta 104:162–169CrossRefGoogle Scholar
  21. 21.
    Ghodsi FE, Tepehan FZ, Tepehan GG (2008) Sol Energy Mater Sol Cells 92:234–237CrossRefGoogle Scholar
  22. 22.
    Orel ZC, Orel B (1995) Sol Energy Mater Sol Cells 30:2284–2290Google Scholar
  23. 23.
    Channei D, Nakaruk A, Phanichphant S, Koshy P, Sorrell CC (2016) J Sol-Gel Sci Technol 79:51–58CrossRefGoogle Scholar
  24. 24.
    Orel ZC, Orel B (1996) Sol Energy Mater Sol Cells 40:205–219CrossRefGoogle Scholar
  25. 25.
    Berton MAC, Avellaneda CO (2001) Mater Res 4:241–244CrossRefGoogle Scholar
  26. 26.
    Rosario AV, Pereira EC (2002) Thin Solid Films 410:1–7CrossRefGoogle Scholar
  27. 27.
    Jung KN, Pyun SI (2006) Electrochim Acta 51:2646–2655CrossRefGoogle Scholar
  28. 28.
    Karthikeyan K, Amaresh S, Kalpana D, Kalai SR, Lee YS (2012) J Phys Chem Solids 73:363–367CrossRefGoogle Scholar
  29. 29.
    Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188Google Scholar
  30. 30.
    Ventura SD, Birgin EG, Martinez JM, Chambouleyron IJ (2005) Appl Phys 97:043512–043512CrossRefGoogle Scholar
  31. 31.
    Truffault L, Ta M, Devers T, Konstantinov K, Harel V, Simmonard C, Andreazza C, Nevirkovets IP, Pineau A, Veron O, Blondeau JP (2010) Mater Res Bull 45:527–535CrossRefGoogle Scholar
  32. 32.
    Wang G, Mu Q, Chen T, Wang Y (2010) J Alloy Compd 493:202–207CrossRefGoogle Scholar
  33. 33.
    Glossary of surface texture parameters (2014) Michigan metrology. Accessed 14 Jan 2018
  34. 34.
    Risovic D, Pavlovic Z (2013) Scanning 9999:1–10Google Scholar
  35. 35.
    Zhou F, Huang YM (2007) Appl Surf Sci 253:4507–4511CrossRefGoogle Scholar
  36. 36.
    Poelman D, Smet PF (2003) J Phys D Appl Phys 36:1850–1857CrossRefGoogle Scholar
  37. 37.
    Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi B 15:627–636CrossRefGoogle Scholar
  38. 38.
    El-Nahass MM, Farag AAM, Atta AA (2009) Synth Met 159:589–594CrossRefGoogle Scholar
  39. 39.
    Chevire F, Munoz F, Baker CF, Tessier F, Larcher O, Boujday S, Colbeau-Justin C, Marchand R (2006) J Solid State Chem 179:3184–3190CrossRefGoogle Scholar
  40. 40.
    Tsunekawa S, Fukuda T, Kasuya A (2000) J Appl Phys 87:1318–1321CrossRefGoogle Scholar
  41. 41.
    Wu LJ, Wiesmann HJ, Moodenbaugh AR, Klie RF, Zhu Y, Welch DO, Suenaga M (2004) Phys Rev B 69:125415–125423Google Scholar
  42. 42.
    Urbach F (1953) Phys Rev 92:1324–1324CrossRefGoogle Scholar
  43. 43.
    Pankove JI (1971) Optical processes in semiconductors. Dover Publications, Inc., New YorkGoogle Scholar
  44. 44.
    Kalu EE, Nwoga TT, Srinivasan V, Weidner JW (2001) J Power Sources 92:163–167CrossRefGoogle Scholar
  45. 45.
    Sun CW, Li H, Zhang HR, Wang ZX, Chen LQ (2005) Nanotechnology 16:1454–1463CrossRefGoogle Scholar
  46. 46.
    Chunlin C (2003) Chin Sci Bull 48:1198–1200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of GuilanRashtIran
  2. 2.Department of Physics, Faculty of Sciences and LettersIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations