Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 135–140 | Cite as

BN—hybrid polymer composites: influence of particle surface functionalization

  • Katharina Lang
  • Peer Löbmann
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Abstract

Boron Nitride (BN) particles were functionalized with vinyl-trimethoxysilane (VTMS) and incorporated into a hybrid polymer (ORMOCER®) resin. The thermal conductivity and mechanical properties of the resulting composite were compared to materials prepared using unmodified particles. Results indicate that the chemical bonding between grain surface and ORMOCER® matrix has a pronounced effect on the final performance of the respective compounds.

The surface of BN particles was functionalized prior to their incorporation into a hybrid polymer (ORMOCER®) matrix, thermal, electrical and mechanical properties of the resulting composites were characterized.

Keywords

ORMOCER® BN Surface modification Composite Thermal conductivity Mechanical properties 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ardebili H, Pecht MG (eds) (2009) Encapsulation Technologies for Electronic Applications. Elsevier, OxfordGoogle Scholar
  2. 2.
    Gu J, Zhang Q, Dang J, Xie C (2011) Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol 23(6):1025–1028CrossRefGoogle Scholar
  3. 3.
    Sato K, Horibe H, Shirai T, Hotta Y, Nakano H, Nagai H, Mitsuishi K, Watari K (2010) Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J Mater Chem 20(14):2749–2752CrossRefGoogle Scholar
  4. 4.
    Zhou WY, Qi SH, Zhao HZ, Liu NL (2007) Thermally conductive silicone rubber reinforced with boron nitride particle. Polym Compos 28(1):23–28CrossRefGoogle Scholar
  5. 5.
    Meier-Westhues U (2007) Polyurethane: Lacke, Kleb- und Dichtstoffe (Technologie des Beschichtens). Vincentz Network, HannoverGoogle Scholar
  6. 6.
    Kickelbick G (2007) Hybrid Materials. WILEY-VCH GmbH & Co. KGaA, WeinheimGoogle Scholar
  7. 7.
    Schmidt R (2004) Challenges in electronic cooling—opportunities for enhanced thermal management techniques—microprocessor liquid cooled minichannel heat sink. Heat Transfer Eng 25(3):3–12CrossRefGoogle Scholar
  8. 8.
    Obreja VVN (2008) Advance in the assembling and packaging of supercapacitor modules of higher performance. 2nd Electronics Systemintegration Technology Conference, Grennwich, UKGoogle Scholar
  9. 9.
    Watari K (2001) High Thermal Conductivity Non–Oxide Ceramics. J Ceram Soc Jpn 109:7–16CrossRefGoogle Scholar
  10. 10.
    Gu J, Zhang Q, Dang J, Zhang J, Yang Z (2009) Thermal conductivity and mechanical properties of aluminum nitride filled linear low-density polyethylene composites. Polym Eng A Sci 49(5):1030–1034CrossRefGoogle Scholar
  11. 11.
    Nagai Y, Lai G-C (1997) Thermal conductivity of epoxy resin filled with particulate aluminum nitride powder. Nippon seramikkusu kyokai gakujutsu ronbunshi 105(3):197–200CrossRefGoogle Scholar
  12. 12.
    Lee GW, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part A Appl Sci Manuf 37(5):727–734CrossRefGoogle Scholar
  13. 13.
    Lee ES, Lee SM, Shanefield DJ, Cannon WR (2008) Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J Am Ceram Soc 91(4):1169–1174CrossRefGoogle Scholar
  14. 14.
    Zhu BL, Ma J, Wu J, Yung KC, Xie CS (2010) Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles. J Appl Polym Sci 118(5):2754–2764CrossRefGoogle Scholar
  15. 15.
    Peng W, Huang X, Yu J, Jiang P, Liu W (2010) Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: effects of nanoparticle surface modification. Compos A 41:1201–1209CrossRefGoogle Scholar
  16. 16.
    Chung SL, Lin JS (2016) Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules 21:670CrossRefGoogle Scholar
  17. 17.
    Ahn K, Kim K, Kim J (2015) Fabrication of surface-treated BN/ETDS composites for enhanced thermal and mechanical properties. Ceram Int 41:9488–9495CrossRefGoogle Scholar
  18. 18.
    Wattanakul K, Manuspiya H, Yanumet N (2010) Effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite. J Appl Polym Sci 119(6):3234–3243CrossRefGoogle Scholar
  19. 19.
    Wattanakul K, Satasit S (2012) The versatile method to control the orientation of BN particles in thermoset matrix. J Chem Chem Eng 6(9):769Google Scholar
  20. 20.
    Hill RF, Peter HS (2002) Thermal conductivity of platelet-filled polymer composites. J Am Ceram Soc 85(4):851–857CrossRefGoogle Scholar
  21. 21.
    Xu YS, Chung DDL (2000) Increasing the thermal conductivity of boron nitride an aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces 7:243–256CrossRefGoogle Scholar
  22. 22.
    Kemaloglu S, Ozkoc G, Aytac A (2009) Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim Acta 499:40–47CrossRefGoogle Scholar
  23. 23.
    Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filed polybenzoxazine. Thermochim Acta 320:177–186CrossRefGoogle Scholar
  24. 24.
    Xie BH, Huang X, Zhang GJ (2013) High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos Sci Technol 85:98–103CrossRefGoogle Scholar
  25. 25.
    Yang N, Xu C, Hou J, Yao Y, Zhang Q, Grami ME, He L, Wang N, Qu X (2016) Preparation and properties of thermally conductive polyimide/boron nitride composites. RSC Adv 6(22):18279–18287CrossRefGoogle Scholar
  26. 26.
    Jin W, Zhang W, Gao Y, Liang G, Gu A, Yuan L (2013) Surface functionalization of hexagonal boron nitride and its effect on the structure and performance of composites. Appl Surf Sci 270:561–571CrossRefGoogle Scholar
  27. 27.
    Kim K, Kim K (2014) Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method. Ceram Int 40:5181–5189CrossRefGoogle Scholar
  28. 28.
    Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphit nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int. J. Heat Mass Transfer 92:15–22Google Scholar
  29. 29.
    Chung DDL (2001) Materials for thermal conduction. Appl Therm Eng 21:1593–1605CrossRefGoogle Scholar
  30. 30.
    Fink M, Collin D, Löbmann P (2017) Hybrid polymer incorporating BN particles: thermal, mechanical and electrical properties. J Sol Gel Sci Technol 83:489–494CrossRefGoogle Scholar
  31. 31.
    Schwetlick K (2004) Organikum. Wiley-VCH, WeinheimGoogle Scholar
  32. 32.
    Socrates G (2001) Infrared and Raman Characteristic Group Frequencies–Tables and Charts, 3rd Edition. Wiley & sons Ltd, ChichesterGoogle Scholar
  33. 33.
    Bruni S, Cariati F, Casu M, Lai A, Musinu A, Piccaluga G, Solinas S (1999) IR an NMR study of nanoparticle-support interactions in a Fe2O3-SiO2 nanocomposite prepared by a sol-gel method. Nanostruct Mater 11:573–586CrossRefGoogle Scholar
  34. 34.
    Fu YX, He ZX, Mo DC, Lu SS (2014) Thermal conductivity enhancement with different fillers for epoxy resin additives. Appl Therm Eng 66:493–498CrossRefGoogle Scholar
  35. 35.
    Yu J, Mo H, Jiang P (2015) Polymer/boron nitride nanosheet composite with high thermal conductivity and sufficient dielectric strength. Polym Adv Technol 26:514–520CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer-Institut für SilicatforschungWürzburgGermany

Personalised recommendations