Skip to main content
Log in

Applications of melting gels

  • Brief Communication: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hybrid organic-inorganic gels and glasses have been studied for many years for a variety of applications. Using the sol–gel process, it is possible to prepare silica-based hybrid gels that are rigid at room temperature, but soften and flow around 110 °C. This softening behavior has been called melting, even though it is not melting in a thermodynamic sense. Instead, the ability to flow is an indication that the material is not entirely cross-linked. In fact, some melting gels show glass transition behavior at temperatures below 0 °C. However, once these so-called melting gels have been heated at around 160 °C for 24 h, they no longer show the ability to soften. With an interest in using these materials for sealing microelectronics, their physical properties have been measured. In addition, their hydrophobicity, adhesion and electrochemical response have been evaluated in corrosive environments. It is also found that melting gels have been imprinted with good fidelity, and that gold nanoparticles maintain their plasmonic resonance when dispersed in melting gels. Finally, melting gels have been deposited by electrospraying to produce a variety of textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Jitianu A, Amatucci G, Klein LC (2008) Organic–inorganic sol-gel thick films for humidity barriers. J Mater Res 23:2084–2090

    Article  Google Scholar 

  2. Jitianu A, Amatucci G, Klein LC (2009) Phenyl-substituted siloxane hybrid gels that soften below 140 °C. J Am Ceram Soc 92:36–40

    Article  Google Scholar 

  3. Matsuda A, Matsuno Y, Tatsumisago M, Minami T (1998) Fine patterning and characterization of gel films derived from methyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc 81:2849–2852

    Article  Google Scholar 

  4. Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2006) Hydrolysis and polycondensation of acid-catalyzed phenyltriethoxysilane (PhTES). J Sol-Gel Sci Technol 39:175–183

    Article  Google Scholar 

  5. Shea KJ, Loy DA, Webster OW (1989) Aryl-bridged polysilsesquioxanes-new microporous materials. Chem Mater 1:572–574

    Article  Google Scholar 

  6. Katagiri K, Hasegawa K, Matsuda A, Tatsumisago M, Minami T (1998) Preparation of transparent thick films by electrophoretic sol-gel deposition using phenyltriethoxysilane-derived particles. J Am Ceram Soc 81:2501–2503

    Article  Google Scholar 

  7. Matsuda A, Sasaki T, Hasegawa K, Tatsumisago M, Minami T (2001) Thermal softening behavior and application to transparent thick films of poly(benzylsilsesquioxane) particles prepared by the sol–gel process. J Am Ceram Soc 84:775–780

    Article  Google Scholar 

  8. Masai H, Takahashi M, Tokuda Y, Yoko T (2005) Gel-melting method for preparation of organically modified siloxane low-melting glasses. J Mater Res 20:1234–1241

    Article  Google Scholar 

  9. Kakiuchida H, Takahashi M, Tokuda Y, Masai H, Kuniyoshi M, Yoko T (2006) Viscoelastic and structural properties of a phenyl-modified polysiloxane system with a three-dimensional structure. J Phys Chem B 110:7321–7327

    Article  Google Scholar 

  10. Kakiuchida H, Takahashi M, Tokuda Y, Masai H, Yoko T (2007) Effects of organic groups on structure and viscoelastic properties of organic−inorganic polysiloxane hybrid system. J Phys Chem B 111:982–988

    Article  Google Scholar 

  11. Klein LC, Jitianu A (2010) Organic-inorganic hybrid melting gels. J Sol-Gel Sci Technol 55:86–93

    Article  Google Scholar 

  12. Klein LC, Jitianu A (2014) Encapsulating battery components with melting gels. In: Ohji T, Matyas J, Manjooran NJ, Pickrell G, Jitianu A (eds) Advances in Materials Science for Environmental and Energy Technologies III. American Ceramic Society, Westerville, Ohio, p 279–286. Volume 250

    Google Scholar 

  13. Jitianu A, Doyle J, Amatucci G, Klein LC (2010) Methyl modified siloxane melting gels for hydrophobic films. J Sol-Gel Sci Technol 53:272–279

    Article  Google Scholar 

  14. Kamimura Y, Kurumada K, Asaba K, Banno H, Kambara H, Hiro M (2006) Evaluation of activation energy of viscous flow of sol–gel derived phenyl-modified silica glass. J Non-Cryst Solids 352:3175–3178

    Article  Google Scholar 

  15. Jitianu A, Lammers K, Arbuckle-Kiel GA, Klein LC (2011) Thermal analysis of organically modified siloxane melting gels. J Therm Anal Calor 107:1039–1045

    Article  Google Scholar 

  16. Klein LC, McClarren B, Jitianu A (2014) Silica-containing hybrid nanocomposite "Melting Gels". Mater Sci Forum Trans Technol 783/786:1432–1437

    Article  Google Scholar 

  17. Gambino L, Jitianu A, Klein LC (2012) Dielectric behavior of organically modified siloxane melting gels. J Non-Cryst Solids 358:3501–3504

    Article  Google Scholar 

  18. Jitianu A, Gonzalez G, Klein LC (2015) Hybrid sol–gel glasses with glass-transition temperatures below room temperature. J Am Ceram Soc 98:3673–3679

    Article  Google Scholar 

  19. Ikeda H, Fujino S, Kajiwara T (2011) Fabrication of micropatterns on silica glass by a room-temperature imprinting method. J Am Ceram Soc 94:2319–2322

    Article  Google Scholar 

  20. Fernández-Sánchez A, Cadarso VJ, Darder M, Domínguez C, Llobera A (2008) Patterning high-aspect-ratio sol–gel structures by microtransfer molding. Chem Mater 20:2662–2668

    Article  Google Scholar 

  21. Jitianu A, Cadars S, Zhang F, Rodriguez G, Picard Q, Aparicio M, Mosa J, Klein LC (2017) 29Si NMR and SAXS investigation of the hybrid organic–inorganic glasses obtained by consolidation of the melting gels. Dalton Trans 46:3729–3741

    Article  Google Scholar 

  22. Klein LC, Al-Marzoki K, Jitianu A (2017) Phase separation in melting gels. Phys Chem Glass: Eur J Glass Sci Technol B 58:142–149

    Google Scholar 

  23. Aparicio M, Jitianu A, Rodriguez G, Degnah A, Al-Marzoki K, Mosa J, Klein LC (2016) Corrosion protection of AISI 304 stainless steel with melting gel coatings. Electrochim Acta 202:325–332

    Article  Google Scholar 

  24. Aparicio M, Jitianu A, Rodriguez G, Al-Marzoki K, Jitianu M, Mosa J, Klein LC (2017) Thickness-properties synergy in organic–inorganic consolidated melting-gel coatings for protection of 304 stainless steel in NaCl solutions. Surf Coat Technol 315:426–435

    Article  Google Scholar 

  25. Degnah A, Rodriguez G, Jitianu A, Mosa J, Aparicio M, Klein LC (2016) Electrochemical properties of melting gel coatings. In Ohji VT, Kanakala R, Matyas J, Manjooran NJ, Wong-Ng WK (eds) Advances in Materials Science for Environmental and Energy Technologies. American Ceramic Soc., Westerville, Ohio, Volume 260

  26. Aparicio M, Jitianu A, Rodriguez G, Picard Q, Mosa J, Klein LC (2018) Organic–inorganic consolidated melting-gel coatings on AZ31 magnesium alloy with remarkable corrosion resistance in NaCl solutions, submitted to Corrosion Science

  27. Figueira RB, Silva CJR, Periera EV (2015) Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res 12:1–35

    Article  Google Scholar 

  28. Eduok U, Faye O, Szpunar J (2017) Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Progress Org Coat 111:124–163

    Article  Google Scholar 

  29. Hwang T, Lee HY, Kim H, Kim GT (2010) Two layered silica protective film made by a spray-and-dip coating method on 304 stainless steel. J Sol-Gel Sci Technol 55:207–212

    Article  Google Scholar 

  30. Nikrooz B, Zandrahimi M, Ebrahimifar H (2012) High temperature oxidation resistance and corrosion properties of dip coated silica coating by sol gel method on stainless steel. J Sol-Gel Sci Technol 63:286–293

    Article  Google Scholar 

  31. Hammer P, dos Santos FC, Cerrutti BM, Pulcinelli SH, Santilli CV (2012) Highly corrosion resistant siloxane-polymethyl methacrylate hybrid coatings. J Sol-Gel Sci Technol 63:266–274

    Article  Google Scholar 

  32. Pan X, Wu J, Ge Y, Xiao K, Luo H, Gao S, Li X (2014) Preparation and characterization of anticorrosion Ormosil sol-gel coatings for aluminum alloy. J Sol-Gel Sci Technol 72:8–20

    Article  Google Scholar 

  33. Wittmar A, Wittmar M, Ulrich A, Caparrotti H, Veith M (2012) Hybrid sol-gel coatings doped with transition metal ions for the protection of AA 2024-T3. J Sol-Gel Sci Technol 61:600–612

    Article  Google Scholar 

  34. Zaharescu M, Predoana L, Barau A, Raps D, Gammel F, Rosero-Navarro NC, Castro Y, Duran A, Aparicio M (2009) SiO2 based hybrid inorganic-organic films doped with TiO2-CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corros Sci 51:1998–2005

    Article  Google Scholar 

  35. Rosero-Navarro NC, Pellice SA, Duran A, Aparicio M (2008) Effects of Ce-containing sol-gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corros Sci 50:1283–1291

    Article  Google Scholar 

  36. Sefzadeh D, Golmoghani-Ebrahimi E (2012) Formation of Novel and crack free nanocomposites based on sol gel process for corrosion protection of copper. Surf Coat Technol 210:103–112

    Article  Google Scholar 

  37. Murillo-Guiterrez NV, Ansart F, Bonino J-P, Menu M-J, Gressier M (2013) Protection against corrosion of magnesium alloys with both conversion layer and sol–gel coating. Surf Coat Technol 232:606–615

    Article  Google Scholar 

  38. Zheludkevich M, Shchukin DG, Yasakau KA, Möhwald H, Ferreira MGS (2007) Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem Mater 19:402–411

    Article  Google Scholar 

  39. Ulaeto SB, Rajan R, Pancrecious JK, Rajan TPD, Pai BC (2017) Developments in smart anticorrosive coatings with multifunctional characteristics. Prog Org Coat 111:294–314

    Article  Google Scholar 

  40. Jeong S, Ahn S-J, Moon J (2005) Fabrication of patterned inorganic-organic hybrid film for the optical waveguide by microfluidic lithography. J Am Ceram Soc 88:1003–1036

    Article  Google Scholar 

  41. Back F, Bockmeyer M, Rudigier-Voigt E, Lobmann P (2013) Hybrid polymer sol-gel material for UV-nanoimprint: Microstructure and thermal densification. J Sol-Gel Sci Technol 66:73–83

    Article  Google Scholar 

  42. Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118:5722–5731

    Article  Google Scholar 

  43. Letailleur A, Teisseire J, Chemin N, Barthel E, Søndergard E (2010) Chemorheology of sol-gel silica for the patterning of high aspect ratio structures by nanoimprint. Chem Mater 22:3143–3151

    Article  Google Scholar 

  44. Indrasekara S, Paladini BJ, Naczynski DJ, Starovoytov V, Moghe PV, Fabris L (2013) Dimeric gold nanoparticle assemblies as tags for SERS based cancer detection. Adv Healthc Mater 2:1370–1376

    Article  Google Scholar 

  45. Lunden H, Liotta A, Chateau D, Lerouge F, Chaput F, Parola S, Brannlund C, Ghadyani Z, Kildemo M, Lindgren M, Lopes C (2015) Dispersion and self-orientation of gold nanoparticles in sol–gel hybrid silica—optical transmission properties. J Mater Chem C 3:1026–1034

    Article  Google Scholar 

  46. Chateau D, Liotta A, Gregori D, Lerouge F, Chaput F, Desert A, Parola S (2017) Controlled surface modification of gold nanostructures with functionalized silicon polymers. J Sol-Gel Sci Technol 81:147–153

    Article  Google Scholar 

  47. Chateau D, Liotta A, Lunden H, Lerouge F, Chaput F, Krein D, Cooper T, Lopes C, El-Amay AAG, Lindgren M, Parola S (2016) Long distance enhancement of nonlinear optical properties using low concentration of plasmonic nanostructures in dye doped monolithic sol–gel materials. Adv Funct Mater 26:6005–6014

    Article  Google Scholar 

  48. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  Google Scholar 

  49. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Piech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  Google Scholar 

  50. Akilany AM, Caravana AC, Hamaly MA, Lerner KT, Thompson LB (2016) Phase transfer of citrate stabilized gold nanoparticles using nonspecifically adsorbed polymers. J Colloid Interface Sci 461:39–44

    Article  Google Scholar 

  51. Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrost 66:197–219

    Article  Google Scholar 

  52. Merrill MH, Pogue WR, Baucom JN (2015) Electrospray ionization of polymers: evaporation, drop fission, and deposited particle morphology. J Micro- Nano-Manuf 3:11003–1-7

    Google Scholar 

  53. Shmueli Y, Shter GE, Assad O, Haick H, Sonntag P, Ricoux P, Grader GS (2012) Structural and electrical properties of single Ga/ZnO nanofibers synthesized by electrospinning. J Mater Res 27:1672–1679

    Article  Google Scholar 

  54. Hu HQ, Singer JP, Osuji CO (2014) Morphology development in thin films of a lamellar block copolymer deposited by electrospray. Macromolecules 47:5703–5710

    Article  Google Scholar 

  55. Zhou X, Xiao H, Feng J, Zhang C, Niang Y (2010) Pore structure modification of silica matrix infiltrated with paraffin as phase change material. Chem Eng Res Des 88:1013–1017

    Article  Google Scholar 

  56. Li Y, Chen Z, Li X, Zeng H (2011) A new surface modification method to improve the dispersity of nano-silica in organic solvents. J Sol-Gel Sci Technol 58:290–295

    Article  Google Scholar 

  57. Li M, Wu Z, Tan J (2012) Properties of form-stable paraffin silicon dioxide/expanded graphite phase change composites prepared by sol-gel method. Appl Energy 92:456–461

    Article  Google Scholar 

  58. Shi J, Wu X, Fu Z, Sun R (2015) Synthesis and thermal properties of a novel nanoencapsulated phase change material with PMMA and SiO2 as hybrid shell materials. Thermochim Acta 617:90–94

    Article  Google Scholar 

  59. Predoi D, Crisan O, Jitianu A, Valsangiacom MC, Raileanu M, Crisan M, Zaharescu M (2007) Iron oxide in a silica matrix prepared by the sol–gel method. Thin Solid Films 515:6319–6323

    Article  Google Scholar 

  60. Tiberto P, Barrera G, Celegato F, Coisson M, Cholerio A, Martino P, Pandolfi P, Allia P (2013) Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur Phys J B 173:1–6

    Google Scholar 

  61. Huang S-Y, Wang J-S (2017) Thermally stable conformal encapsulation material for high-power ultraviolet light-emitting diodes. Opt Eng 56:077105

    Article  Google Scholar 

  62. Yaacoub S, Calas-Etienne S, Jabbour J, Courson R, Tauk R, Khoury A, Mehdi A, Etienne P (2013) Synthesis of new vinyl ether functionalized silica for UV-patterning. J Sol-Gel Sci Technol 67:384–393

    Article  Google Scholar 

  63. Liu F, Zeng X, Lai X, Li H (2017) Synthesis and characterization of polyphenylsilsesquioxane terminated with methyl and vinyl groups low-melting glass. J Adhes Sci Technol 31:2399–2409

    Article  Google Scholar 

  64. Kurumada K, Ashraf KM, Matsumoto S (2014) Effects of heat treatment on various properties of organic-inorganic hybrid silica derived from phenyltriethoxysilane. Mat Chem Phys 144:132–138

    Article  Google Scholar 

  65. Macan J, Tadanaga K, Tatsumisago M (2010) Influence of copolymerization with alkyltrialkoxysilanes on condensation and thermal behavior of poly(phenylsilsesquioxane) particles. J Sol-Gel Sci Technol 53:31–37

    Article  Google Scholar 

  66. Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2007) Thermosoftening phenyl siloxane glasses prepared via sol concentration. J Non-Cryst Solids 353:4162–4169

    Article  Google Scholar 

  67. Mah SK, Chung IJ (1995) Effects of dimethyldiethoxysilane addition on tetraethylorthosilicate sol-gel process. J Non-Cryst Solids 183:252–259

    Article  Google Scholar 

  68. Gunji T, Tozune T, Kaburaki H, Arimtsu K, Abe Y (2013) Preparation of co-polymethyl(alkoxy)siloxanes by acid-catalyzed controlled hydrolytic copolycondensation of methyl(trialkoxy)silane and tetraalkoxysilane. J Polym Sci Part A: Polym Chem 51:4732–4741

    Article  Google Scholar 

  69. Borovin E, Callone E, Ceccato R, Quaranta A, Dire S (2014) Adsorptive properties of sol-gel derived hybrid organic/inorganic coatings. Mat Chem Phys 147:954–962

    Article  Google Scholar 

  70. Kuo C-FJ, Chen J-B (2015) Study on the synthesis and application of silicone resin containing phenyl group. J Sol Gel Sci Technol 76:66–73

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was received from NSF Award 1313544 Materials World Network-SusChEM and Ministerio de Economia y Competitividad, SPAIN (PCIN-2013-030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Klein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • Melting gels are organic-inorganic hybrid gels with glass transition temperatures below room temperature

  • Melting gel coatings are nonporous and provide corrosion protection to metals

  • Melting gels doped with gold nanospheres exhibit a broad plasmon peak

  • Imprint lithography transfers patterns to melting gels with good fidelity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, L.C., Kallontzi, S., Fabris, L. et al. Applications of melting gels. J Sol-Gel Sci Technol 89, 66–77 (2019). https://doi.org/10.1007/s10971-018-4599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4599-9

Keywords

Navigation