Journal of Sol-Gel Science and Technology

, Volume 85, Issue 3, pp 520–528 | Cite as

Carbonaceous nickel oxide composite films with homogenously dispersed metallic Ni nanoparticles by a facile sol–gel method

  • Xiajun Dong
  • Shanshan Jiang
  • Shahid Khan
  • Zhizheng Wu
  • Jianxun Wang
  • Chenlu Song
  • Gaorong Han
  • Yong Liu
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)


A composite of Ni/C/NiO thin films, in which the metallic nickel nanoparticles (MNNs) are homogeneously dispersed, has been prepared by a facile one-step sol–gel technique as a solar-selective absorber (SSA). Comprehensive analysis of the as-prepared composite films has been carried out employing various characterization techniques. The results reveal that both metallic Ni and NiO nanoparticles are surrounded by the resident carbon and the MNNs emerge from the NiO precursor reduced by the resident carbon. The size of the homogeneously dispersed MNNs increases with the annealing temperature from ~4 to ~7 nm. A HCP–FCC phase transition of MNNs was found at about 400–450 °C, while the contents of Ni and Ni2+ are almost equal at the same time. The solar-selective absorptance properties of Ni/C/NiO composite films were studied by measuring the reflectance in the UV-Vis and infrared wavelength range. The results indicate that the smaller MNNs and the thinner films attenuate the absorptance but enhance the emittance. The one-layer Ni/C/NiO composite film on copper substrate annealed at 450 °C is preferred in the present work, exhibiting an absorptance of about 0.86 and an emittance of about 0.11, and capable of a good candidate as SSA for the low–middle temperature applications.


Solar-selective absorbers Metal nickel nanoparticles Nickel oxide Composite films 



This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0303900), the National Natural Science Foundation of China (No. 51672242), and Zhejiang Provincial Natural Science Foundation of China (No. LY16E020002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4597_MOESM1_ESM.docx (1.8 mb)
Supplementary Information


  1. 1.
    Wang ZY, Yang WS, Qiu F, Zhang XM, Zhao XD (2015) Solar water heating: from theory, application, marketing and research. Renew Sust Energ Rev 41:68–84CrossRefGoogle Scholar
  2. 2.
    Li PF, Liu BA, Ni YZ, Liew KK, Sze J, Chen S, Shen S (2015) Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv Mater 27(31):4585–4591CrossRefGoogle Scholar
  3. 3.
    Khodasevych IE, Wang LP, Mitchell A, Rosengarten G (2015) Micro- and nanostructured surfaces for selective solar absorption. Adv Opt Mater 3(7):852–881CrossRefGoogle Scholar
  4. 4.
    Amri A, Jiang ZT, Pryor T, Yin C-Y, Djordjevic S (2014) Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: a review. Renew Sustain Energy Rev 36:316–328CrossRefGoogle Scholar
  5. 5.
    Mastai Y, Polarz S, Antonietti M (2002) Silica-carbon nanocomposites: a new concept for the design of solar absorbers. Adv Funct Mater 12(3):197–202CrossRefGoogle Scholar
  6. 6.
    Katzen D, Levy E, Mastai Y (2005) Thin films of silica–carbon nanocomposites for selective solar absorbers. Appl Surf Sci 248(1-4):514–517CrossRefGoogle Scholar
  7. 7.
    Katumba G, Makiwa G, Baisitse TR, Olumekor L, Forbes A, Wäckelgård E (2008) Solar selective absorber functionality of carbon nanoparticles embedded in SiO2, ZnO and NiO Matrices. Phys Status Solidi C 5(2):549–551CrossRefGoogle Scholar
  8. 8.
    Katumba G, Olumekor L, Forbes A, Makiwa G, Mwakikunga B, Lu J, Wäckelgård E (2008) Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers. Sol Energy Mater Sol Cells 92(10):1285–1292CrossRefGoogle Scholar
  9. 9.
    Katumba G, Lu J, Olumekor L, Westin G, Wackelgard E (2005) Low cost selective solar absorber coatings: characteristics of carbon-in-silica synthesized with sol-gel technique. J Sol Gel Sci Technol 36(1):33–43CrossRefGoogle Scholar
  10. 10.
    Roro KT, Tile N, Forbes A (2012) Preparation and characterization of carbon/nickel oxide nanocomposite coatings for solar absorber applications. Appl Surf Sci 258(18):7174–7180CrossRefGoogle Scholar
  11. 11.
    Roro KT, Tile N, Mwakikunga B, Yalisi B, Forbes A (2012) Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol–gel process. Mater Sci Eng B 177(8):581–587CrossRefGoogle Scholar
  12. 12.
    Zhao SX, Ribbing CG, Wackelgard E (2004) Optical constants of sputtered Ni/NiO solar absorber film-depth-profiled characterization. Sol Energy Mater Sol Cells 84(1-4):193–203CrossRefGoogle Scholar
  13. 13.
    Wang X, Li H, Yu X, Shi X, Liu J (2012) High-performance solution-processed plasmonic Ni nanochain-Al2O3 selective solar thermal absorbers. Appl Phys Lett 101(20):203109CrossRefGoogle Scholar
  14. 14.
    Klochko NP, Klepikova KS, Tyukhov II, Myagchenko YO, Melnychuk EE, Kopach VR, Khrypunov GS, Lyubov VM, Kopach AV, Starikov VV, Kirichenko MV (2015) Zinc oxide-nickel cermet selective coatings obtained by sequential electrodeposition. Sol Energy 117:1–9CrossRefGoogle Scholar
  15. 15.
    Farooq M, Green AA, Hutchins MG (1998) High performance sputtered Ni: SiO2 composite solar absorber surfaces. Sol Energy Mater Sol Cells 54(1-4):67–73CrossRefGoogle Scholar
  16. 16.
    Jena A, Munichandraiah N, Shivashankar SA (2013) Carbonaceous nickel oxide nano-composites: as electrode materials in electrochemical capacitor applications. J Power Sources 237:156–166CrossRefGoogle Scholar
  17. 17.
    Wang K, Khan S, Yuan G, Hua C, Wu Z, Song C, Han G, Liu Y (2017) A facile one-step method to fabricate multi-scaled solar selective absorber with nano-composite and controllable micro-porous texture. Sol Energy Mater Sol Cells 163:105–112CrossRefGoogle Scholar
  18. 18.
    Wu Z, Wang K, Yuan G, Li W, Song C, Han G, Liu Y (2016) Controllable fabrication and characterization of porous C/TiO2 nanocomposite films as solar selective absorber. Surf Coat Technol 302:468–473CrossRefGoogle Scholar
  19. 19.
    Cheng B, Wang KK, Wang KP, Li M, Jiang W, Cong BJ, Song CL, Jia SH, Han GR, Liu Y (2015) Preparation and characterization of porous carbon-titania nanocomposite films as solar selective absorbers. J Alloy Compd 635:129–135CrossRefGoogle Scholar
  20. 20.
    Syukri Ban, Ohya T, Y. Takahashi Y (2003) A simple synthesis of metallic Ni and Ni-Co alloy fine powders from a mixed-metal acetate precursor. Mater Chem Phys 78(3):645–649CrossRefGoogle Scholar
  21. 21.
    Chen Y, Peng D-L, Lin D, Luo X (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18(50):505703CrossRefGoogle Scholar
  22. 22.
    Goto Y, Taniguchi K, Omata T, Otsuka-Yao-Matsuo S, Ohashi N, Ueda S, Yoshikawa H, Yamashita Y, Oohashi H, Kobayashi K (2008) Formation of Ni3C nanocrystals by thermolysis of nickel acetylacetonate in oleylamine: characterization using hard X-ray photoelectron spectroscopy. Chem Mater 20(12):4156–4160CrossRefGoogle Scholar
  23. 23.
    Que WX, Sun Z, Zhou Y, Lam YL, Chan YC, Kam CH (2000) Optical and mechanical properties of TiO2/SiO2/organically modified silane composite films prepared by sol-gel processing. Thin Solid Films 359(2):177–183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiajun Dong
    • 1
  • Shanshan Jiang
    • 1
  • Shahid Khan
    • 1
  • Zhizheng Wu
    • 1
  • Jianxun Wang
    • 1
  • Chenlu Song
    • 1
  • Gaorong Han
    • 1
  • Yong Liu
    • 1
  1. 1.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations