Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 73–82 | Cite as

Superparamagnetic nanosized perovskite oxide La0.5Sr0.5Ti0.5Fe0.5O3 synthesized by modified polymeric precursor method: effect of calcination temperature on structural and magnetic properties

  • Nisha Choudhary
  • Mukesh Kumar Verma
  • Narayan Dutt Sharma
  • Suman Sharma
  • Devinder Singh
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


The present investigation reports the synthesis of superparamagnetic La0.5Sr0.5Ti0.5Fe0.5O3 by modified polymeric precursor method and the effect of temperature on its structural and magnetic properties. The structures of the phases, calcined at different temperatures, were refined in the space group Pbnm with orthorhombic setting. The crystallite size and specific surface area during the decomposition process were monitored up to 1100 °C. A pure nanosized La0.5Sr0.5Ti0.5Fe0.5O3 powder with high-specific surface area of 49 m2 g-1 was obtained after calcination at 500 °C, while the crystallite size was found to be 18 nm, which was in good agreement with the grain size (19 nm) obtained from TEM investigations. The field dependence of magnetization (M–H) measurements indicate that all the samples exhibit weak ferromagnetic behavior due to slight canting of the adjacent Fe3+ spins. The value Mr/Ms of nano sample calcined at 500 °C indicates the formation of superparamagnetic phase. Magnetization increase significantly with decreasing particle size, while there is sharp decrease in coercivity.


Polymeric precursor Rietveld refinements TEM Magnetic properties 



We are thankful to Department of Science and Technology, New Delhi for financial support under INSPIRE Program vide letter No. DST/INSPIRE Fellowship/2012/776 (IF120846). We are also thankful to Dr. Harpreet Singh, Central Research Facility Section, Indian Institute of Technology Ropar, for recording XRD. We also thank Prof. Ramesh Chandra, Institute Instrumentation Center, Indian Institute of Technology, Roorkee, for recording EDX, SEM, and TEM. We are also thankful to Director, Central Instruments Facility, Indian Institute of Technology, Guwahati, for carrying out M–H magnetic measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yang Z, Huang Y, Dong B, Li HL (2005) Fabrication and structural properties of LaFeO3 nanowires by an ethanol-ammonia-based sol–gel template route. Appl Phys A 81:453–457CrossRefGoogle Scholar
  2. 2.
    Zheng W, Liu R, Peng D, Meng G (2000) Hydrothermal synthesis of LaFeO3 under carbonate-containing medium. Mater Lett 43:19–22CrossRefGoogle Scholar
  3. 3.
    Mohapatra SK, Misra M, Mahajan VK, Raja KS (2008) Synthesis of Y-branched TiO2 nanotubes. Mater Lett 62:1772–1774CrossRefGoogle Scholar
  4. 4.
    Zhang SH, Dong XT, Xu SZ, Wang JX (2007) Preparation and characterization of TiO2@SiO2 submicron-scaled coaxial cables via a static electricity spinning technique. Acta Chim Sin 65:2675–2679Google Scholar
  5. 5.
    Tugova EA, Popova VF, Zvereva IA, Gusarov VV (2006) Phase diagram of the LaFeO3–LaSrFeO4 system. Glass Phys Chem 32:674–667CrossRefGoogle Scholar
  6. 6.
    Parkin SSP, Roche KP, Samant MG, Rice PM, Beyers RB, Scheuerlein RE, O’Sullivan EJ, Brown SL, Bucchigano J, Abraham DW, Lu Y, Rooks M, Trouilloud PL, Wanner RA, Gallagher WJ (1999) Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J Appl Phy 85:5828–5833CrossRefGoogle Scholar
  7. 7.
    Tijare SN, Joshi MV, Padole PS, Mangrulkar PA, Rayalu S, Labhsetwar NK (2012) Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrog Energy 37:10451–10456CrossRefGoogle Scholar
  8. 8.
    Taylor FH, Buckeridge J, Catlow CRA (2016) Defects and oxide ion migration in the solid oxide fuel cell cathode material LaFeO3. Chem Mater 28:8210–8220CrossRefGoogle Scholar
  9. 9.
    Luning J, Nolting F, Scholl A, Ohldag H, Seo JW, Fompeyrine J, Locquet JP, Stohr J (2003) Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by x-ray magnetic linear dichroism spectroscopy. Phys Rev B 67:214433 (1–14)CrossRefGoogle Scholar
  10. 10.
    Tanaka H, Kawai T (1999) Enhancement of magnetoresistance in spin frustrated (La,Sr)MnO3/LaFeO3 artificial lattices. Solid State Commun 112:201–205CrossRefGoogle Scholar
  11. 11.
    He X, Jin K (2016) Engineering charge ordering into multiferroicity. Phys Rev B 93:161108(R) (1–5)Google Scholar
  12. 12.
    Bruno FY, Grisolia MN, Visani C, Valencia S, Varela M, Abrudan R, Tornos J (2015) Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping. Nat Commun 6:6306 (1–9)CrossRefGoogle Scholar
  13. 13.
    Padal NT, Pawar SA, Kolekar YD, Kulkarni SV, Joshi PB (2005) Structural, dielectric and electron transport properties of LaFeO3 substituted (PbBa)TiO3 ferroelectrics. Ferroelectrics 323:123–129CrossRefGoogle Scholar
  14. 14.
    Afifah N, Saleh R (2017) Effect of crystallite structure and graphene incorporation on photocatalytic performance of LaFeO3. Mat Sci Eng 202:012063 (1–5)Google Scholar
  15. 15.
    Geller S, Wood EA (1956) Crystallographic studies of perovskite-like compounds. I. rare earth orthoferrites and YFeO3, YCrO3, YAlO3. Acta Cryst 9:563–568CrossRefGoogle Scholar
  16. 16.
    Koehler WC, Wollan EO (1957) Neutron-diffraction study of the magnetic properties of perovskite-like compounds LaBO3. J Phys Chem Solids 2:100–106CrossRefGoogle Scholar
  17. 17.
    Scholl A, Stohr J, Luning J, Seo JW, Fompeyrine J, Siegwart H, Locquet JP, Nolting F, Anders S, Fullerton EE, Scheinfein MR, Padmore HA (2000) Observation of antiferromagnetic domains in epitaxial thin films. Science 287:1014–1015CrossRefGoogle Scholar
  18. 18.
    Selbach SM, Tolchard JR, Fossdal A, Grande T (2012) Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction. J Solid State Chem 196:249–254CrossRefGoogle Scholar
  19. 19.
    Stolen S, Gronvold F, Brinks H, Atake T, Mori H (1998) Heat capacity and thermodynamic properties of LaFeO3 and LaCoO3 from T=13 K to T =1000 K. J Chem Thermodyn 30:365–377CrossRefGoogle Scholar
  20. 20.
    Eibschutz M, Shtrikman S, Treves D (1967) Mossbauer studies of Fe57 in orthoferrites. Phys Rev 156:562–577CrossRefGoogle Scholar
  21. 21.
    Price PM, Butt DP (2015) Stability and decomposition of Ca-substituted lanthanum ferrite in reducing atmospheres. J Am Ceram Soc 98:2881–2886CrossRefGoogle Scholar
  22. 22.
    Beausoleil GL, Price P, Thomsen D, Punnoose A, Ubic R, Misture S, Butt DP (2014) Thermal expansion of alkaline-doped lanthanum ferrite near the neel temperature. J Am Ceram Soc 97:228–234CrossRefGoogle Scholar
  23. 23.
    Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396CrossRefGoogle Scholar
  24. 24.
    Winkler E, Zysler RD, Mansilla MV, Fiorani D (2005) Surface anisotropy effects in NiO nanoparticles. Phys Rev B 72:132409 (1–4)Google Scholar
  25. 25.
    Scholl A, Nolting F, Seo JW, Ohldag H, Stöhr J, Raoux S, Locquet JP, Fompeyrine J (2004) Domain-size-dependent exchange bias in Co/LaFeO3. Appl Phys Lett 85:4085–4087CrossRefGoogle Scholar
  26. 26.
    Lee YC, Parkhomov AB, Krishnan KM (2010) Size-driven magnetic transitions in monodisperse MnO nanocrystals. J Appl Phys 107:09E124 (1–3)Google Scholar
  27. 27.
    Kappenberger P, Martin S, Pellmont Y, Hug HJ, Kortright JB, Hellwig O, Fullerton EE (2003) Direct imaging and determination of the uncompensated spin density in exchange-biased CoO/(CoPt) multilayers. Phys Rev Lett 91:267202 (1-4)CrossRefGoogle Scholar
  28. 28.
    Kappenberger P, Schmid L, Hug HJ (2005) Investigation of the exchange bias effect by quantitative magnetic force microscopy Adv Eng Mat 7:332–338CrossRefGoogle Scholar
  29. 29.
    Nogués J, Leighton C, Schuller IK (2000) Correlation between antiferromagnetic interface coupling and positive exchange bias. Phys Rev B 61:1315–1317CrossRefGoogle Scholar
  30. 30.
    Gruyters M, Riegel D (2001) Strong exchange bias by a single layer of independent antiferromagnetic grains: The CoO/Co model system. Phys Rev B 63:052401 (1–4)Google Scholar
  31. 31.
    Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young AT, Carey M, Stöhr J (2003) Correlation between exchange bias and pinned interfacial spins. J Phys Rev Lett 91:017203 (1–4)CrossRefGoogle Scholar
  32. 32.
    Ohldag H, Regan T, Stöhr J, Scholl A, Nolting F, Lüning J, Stamm C, Anders S, White RL (2001) Spectroscopic identification and direct imaging of interfacial magnetic spins. Phys Rev Lett 87:247201 (1–4)CrossRefGoogle Scholar
  33. 33.
    Giri S, Patra M, Majumdar S (2011) Exchange bias effect in alloys and compounds. J Phys Condens Matter 23:073201 (1– 23)CrossRefGoogle Scholar
  34. 34.
    Lunkenheimer P, Rudolf T, Hemberger J, Pimenov A, Tachos S, Lichtenberg F, Loidl A (2003) Dielectric properties and dynamical conductivity of LaTiO3: From dc to optical frequencies. Phys Rev B 68:245108 (1–11)CrossRefGoogle Scholar
  35. 35.
    Mochizuki M, Imada M (2003) Orbital-spin structure and lattice coupling in RTiO3 where R=La, Pr, Nd and Sm. Phys Rev Lett 91:167203 (1–4)CrossRefGoogle Scholar
  36. 36.
    Tokura Y, Taguchi T, Okada Y, Fujishima Y, Arima T, Kumagai K, Iye Y (1993) Filling dependence of electronic properties on the verge of metal–mott-insulator transition in Sr1−xLaxTiO3. Phys Rev Lett 70:2126–2129CrossRefGoogle Scholar
  37. 37.
    Coronado RM, Alonso JA, Aguadero A, Coll DP, Diaz MTF (2013) Neutron structural characterization and transport properties of oxidized and reduced La0.5Sr0.5M0.5Ti0.5O3 (M=Mn, Fe) perovskites: Possible electrode materials in solid-oxide fuel cells. J Appl Phys 113:123708 (1–7)CrossRefGoogle Scholar
  38. 38.
    Lau ML, Jiang HG, Perez RJ, Juarez-Islas J, Lavernia EJ (1996) Synthesis of nanocrystalline M50 steel powders by cryomilling. Nanostruct Mater 7:847–856CrossRefGoogle Scholar
  39. 39.
    Popa M, Frantti J, Kakihana M (2002) Lanthanum ferrite LaFeO3+δ nanopowders obtained by the polymerizable complex method. Solid State Ion 154–155:437–445CrossRefGoogle Scholar
  40. 40.
    Chena JC, Chenb WC, Tiena YC, Shihc CJ (2010) Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process. J Alloy Compd 496:364–369CrossRefGoogle Scholar
  41. 41.
    Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925–946CrossRefGoogle Scholar
  42. 42.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  43. 43.
    Georgea M, John AM, Nair SS, Joy PA, Anantharaman MR (2006) Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195CrossRefGoogle Scholar
  44. 44.
    Laberty C, Alphonse P, Demai JJ, Sarda C, Rousset A (1997) Synthesis and characterization of nonstoichiometric nickel manganite spinels NixMn3− x3δ4O4+ δ. Mater Res Bull 32:249–261CrossRefGoogle Scholar
  45. 45.
    Rezlescu N, Rezlescu E, Popa PD, Popovici E, Doroftei C, Ignat M (2013) Preparation and characterization of spinel-type MeFe2O4 (Me=Cu, Cd, Ni and Zn) for catalyst applications. Mater Chem Phys 137:922–927CrossRefGoogle Scholar
  46. 46.
    Vasoya NH, Vanpariya LH, Sakariya PN, Timbadiya MD, Pathak TK, Lakhani VK, Modi KB (2010) Synthesis of nanostructured material by mechanical milling and study on structural property modifications in Ni0.5Zn0.5Fe2O4. Ceram Int 36:947–954CrossRefGoogle Scholar
  47. 47.
    Li S, Jing L, Fu W, Yang L, Xin B, Fu H (2007) Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. Mat Res Bull 42:203–212CrossRefGoogle Scholar
  48. 48.
    Nakayama S (2001) LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and comples synthesis methods. J Mater Sci 36:5643–5648CrossRefGoogle Scholar
  49. 49.
    Shter GE, Schwartzman AR, Grader GS (1995) Interrelation of calcination temperature, surface area and densification of oxalate-derived YBCO. Appl Supercond 3:543–550CrossRefGoogle Scholar
  50. 50.
    Andoulsi R, Horchani-Naifer K, Férid M (2012) Preparation of lanthanum ferrite powder at low temperature. Cerâmica 58:126–130CrossRefGoogle Scholar
  51. 51.
    Margellou AG, Papadas IT, Petrakis DE, Armatas GS (2016) Development of enhanced surface area LaFeO3 perovskites using amino acids as templating agents. Mater Res Bull 83:491–501CrossRefGoogle Scholar
  52. 52.
    Mazumder R, Ghosh S, Mondal P, Bhattacharya D, Dasgupta S, Das N, Sen A, Tyagi AK, Sivakumar M, Takami T, Ikuta H (2006) Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3. J Appl Phys 100:033908 (1–9)CrossRefGoogle Scholar
  53. 53.
    Huang F, Wang Z, Lu X, Zhang J, Min K, Lin W, Ti R, Xu T, He J, Yue C, Zhu J (2013) Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci Rep 3:2907 (1– 7)CrossRefGoogle Scholar
  54. 54.
    Maiti R, Basu S, Chakravorty D (2009) Synthesis of nanocrystalline YFeO3 and its magnetic properties. J Magn Magn Mater 321:3274–3277CrossRefGoogle Scholar
  55. 55.
    Vejpravova JP, Niznnasky D, Plocek J, Hutlova A, Rehspringer JL (2005) Superparamagnetism of co-ferrite nanoparticles, in Proceeding of contributed paper, part III (WDS ’05) 518–523Google Scholar
  56. 56.
    Xue D, Chai G, Li X, Fan X (2008) Effects of grain size distribution on coercivity and permeability of ferromagnets. J Magn Magn Mater 320:1541–1543CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nisha Choudhary
    • 1
  • Mukesh Kumar Verma
    • 1
  • Narayan Dutt Sharma
    • 1
  • Suman Sharma
  • Devinder Singh
    • 1
  1. 1.Department of ChemistryUniversity of JammuJammuIndia

Personalised recommendations