Skip to main content
Log in

Relevance of thermal analysis for sol–gel-derived nanomaterials

  • Invited Review: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

It is well known that the first step of the sol-gel method consists in obtaining of amorphous or incipient crystallized materials that could be kept in the same state or could be transformed into vitreous or crystallized materials by adequate thermal treatments. In the present study, examples regarding the relevance of the thermal analysis methods for the characterization of the sol–gel-derived oxide systems, inorganic–organic hybrids, and composite nanomaterials are discussed. For the oxide systems, case studies regarding undoped and doped monocomponent oxides and polycomponent systems are discussed. In the case of inorganic–organic hybrids, the correlation between the type of precursors and the thermal behavior is presented. For the composite nanomaterials, examples for thermal behavior of two types of nanocomposites, namely both compositionally and structurally different, as well as inorganic–organic hybrid sol-gel nanocomposites are shown. In all studied cases, the thermal analysis methods allow obtaining important information not only on thermal behavior but also on the chemical composition of the as-prepared gels and powders. Different structural investigations methods (XRD, FTIR, and Raman) sustain the results obtained by thermal investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Geffcken W, Berger E (1943) Anti-reflective coating. German Patent 736411 (Jenaer Glasswerk Schott), Granted 6 May 1943

  2. Dislich H (1971) Angew Chem Int Ed 10:363–370

    Article  Google Scholar 

  3. Iler RK (1979) The chemistry of silica. John Wiley and Sons, Chichester

    Google Scholar 

  4. Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259–341

    Article  Google Scholar 

  5. Brinker CJ, Scherrer GW (1990) Sol-gel science. The physics and chemistry of sol-gel processing. Academic Press, Boston

    Google Scholar 

  6. Pierre AC (1998) Introduction to the sol-gel process. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  7. Guel MLA, Jiménez LD, Hernández DAC (2017) Ultrason Sonochem. 35(Pt A): 514–517

  8. Pinjari DV, Prasad K, Gogate PR, Mhaske ST, Pandit AB (2015) Ultrason Sonochem 23:185–191

    Article  Google Scholar 

  9. Predoana L, Calderon-Moreno JM, Anastasescu M, Stoica M, Stanciu I, Preda S, Gartner M, Zaharescu M (2016) J Sol-Gel Sci Technol 78:589–599

    Article  Google Scholar 

  10. Wei L, Joonho L (2008) J Phys Chem C 112:11679–11684

    Google Scholar 

  11. ICTAC (1991) For better thermal analysis and calorimetry, 3rd edn

  12. McNaught AD, Wilkinson A (1997) IUPAC Compendium of chemical technology. Blackwell, Oxford

    Google Scholar 

  13. Malic B, Kupec A, Kosec M (2013) Thermal analysis. In: Schneller T, Waser R, Kosec M, Payne D (eds) Chemical solution deposition of functional thin films. Springer guide to instrumental analysis. CRC Press, Boca Raton: FL, p 181–191

    Google Scholar 

  14. Segal E, Budrugeac P, Carp O, Doca N, Popescu C, Vlase T (2013) Analiza termicᾰ. Fundamente şi aplicaţii (in Romanian). Academiei Române, Bucharest

    Google Scholar 

  15. Paulik F, Paulik J, Erdey L (1966) Talanta 13:1405–1430

    Article  Google Scholar 

  16. Dean JA (1995) The analytical chemistry handbook, New York, NY

  17. Coats AW, Redfern JP (1963) Thermogravimetric analysis: a review. Analyst 88:906–924

    Article  Google Scholar 

  18. Pungor E (1995) A practical. Acta 114:1–13

    Google Scholar 

  19. Höhne GWH, Hemminger WF, Flammersheim HJ (2003) Differential scanning calorimetry. Springer Verlag Heidelberg, New York, NY

    Book  Google Scholar 

  20. Price D, Dollimore D, Fatemi NS, Whitehead R (1980) Thermochim Acta 42:323–332

    Article  Google Scholar 

  21. Barnes PA (1987) Thermochim

  22. Brown ME (2001) Introduction to thermal analysis: techniques and applications. Springer, Netherlands

    Google Scholar 

  23. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) J Appl Phys 32:1679–1684

    Article  Google Scholar 

  24. Menard KP(1999), Dynamic Mechanical Analysis; CRC Press, Boca Raton. Florida

  25. Wiedemann HG, Widmann G, Bayer G (1994) Glass transition in polymers: comparison of results from DSC, TMA and TOA measurements. In: Seyler RJ (ed). Assigment of the glass transition, ASTM STP/249. American Society for Festing and Materials, Philadelphia

    Google Scholar 

  26. Schmidt H (1988) J Non-Cryst Solids 100:51–64

    Article  Google Scholar 

  27. Sakka S, Kamya K (1982) J Non-Cryst Solids 48:31–46

    Article  Google Scholar 

  28. Dislich H, Hinz P (1982) J Non-Cryst Solids 48:11–16

    Article  Google Scholar 

  29. Zaharescu M, Predoana L, Pandele-Cusu J (2018) Thermal Analysis on Gels, Glasses and Powders in Klein LC, Jitianu A, Aparicio M (eds) Powders in Handbook of Sol-Gel Science and Technology, 2nd edition, Springer, https://doi.org/10.1007/978-3-319-19454-7_99-1

  30. Dislich H, Eckart H (1981) Thin Solid Films 77:129–140

    Article  Google Scholar 

  31. Dislich H (1983) J Non-Cryst Solids 57:371–388

    Article  Google Scholar 

  32. Zarzycki J (1982) J Non-Cryst Solids 48:105–116

    Article  Google Scholar 

  33. Nogami M, Moriya Y (1980) J Non-Cryst Solids 37:191–201

    Article  Google Scholar 

  34. Klein LC, Garvey GJ (1982) J Non-Cryst Solids 48:97–104

    Article  Google Scholar 

  35. Klein LC, Gallo TA, Garvey GJ (1984) J Non-Cryst Solids 63:23–33

    Article  Google Scholar 

  36. Brinker CJ, Keefer KD, Schaffer DW, Ashley C (1982) J Non-Cryst Solids 42:47–64

    Article  Google Scholar 

  37. Brinker CJ, Scherrer GW (1985) J Non-Cryst Solids 70:301–322

    Article  Google Scholar 

  38. Zarzycki J, Prassas M, Phalippou J (1982) J Mater Sci 17:3371–3379

    Article  Google Scholar 

  39. Yoldas BE (1979) Mater J Sci 14:1843–1849

    Article  Google Scholar 

  40. Nogami M, Moriya Y (1982) J Non-Cryst Solids 48:359–366

    Article  Google Scholar 

  41. Villegas MA, Fernandez Navarro JM (1988) J Mater Sci 23:2464–2478

    Article  Google Scholar 

  42. Ranganathan V, Klein LC (2008) J Non-Cryst Solids 354:3567–3571

    Article  Google Scholar 

  43. Raileanu M, Todan L, Crisan M, Braileanu A, Rusu A, Bradu C, Carpov A (2010) J Environ Prot 1:302–313

    Article  Google Scholar 

  44. Anastasescu C, Anastasescu M, Teodorescu VS, Gartner M, Zaharescu M (2010) J Non-Cryst Solids 356:2634–2640

    Article  Google Scholar 

  45. Nakamura H, Matsui Y (1995) J Am Chem Soc 117:2651–2652

    Article  Google Scholar 

  46. Anastasescu C, Zaharescu M, Balint I (2009) Catal Lett 132:81–86

    Article  Google Scholar 

  47. Anastasescu C, Anastasescu M, Zaharescu M, Balint I (2012) J Nanopart Res 14:1198

    Article  Google Scholar 

  48. Crisan M, Jitianu A, Crisan D, Balasoiu M, Dragan N, Zaharescu M (2000) J Optoelectron Adv Mater 2:339–344

    Google Scholar 

  49. Yoldas BE (1975) J Mater Sci 10:1856–1860

    Article  Google Scholar 

  50. Chappell JS, Procopio LJ, Birchall JD (1990) J Mater Sci Lett 9:1329–1331

    Article  Google Scholar 

  51. Tahir M, Amin NAS (2013) Energy Convers Manag 76:194–214

    Article  Google Scholar 

  52. O’Regan B, Gratzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  53. Dumbrava A, Georgescu A, Damache G, Badea C, Enache I, Oprea C, Gartu MA (2008) J Optoelectron Adv Mater 10:2996–3002

    Google Scholar 

  54. Wei X, Yang Z, Tay SL, Gao W (2014) Appl Surf Sci 290:274–279

    Article  Google Scholar 

  55. Akpan UG, Hameed BH (2010) Appl Catal A 375:1–11

    Article  Google Scholar 

  56. Stanciu I, Predoana L, Anastasescu C, Culita DC, Preda S, Pandele Cusu J, Munteanu C, Rusu A, Balint I, Zaharescu M (2014) Rev Roum Chim 59:919–929

    Google Scholar 

  57. Crisan M, Raileanu M, Dragan N, Crisan D, Ianculescu A, Nitoi I, Oancea P, Somacescu S, Stanica N, Vasile B, Stan C (2015) Appl Catal A 504:130–142

    Article  Google Scholar 

  58. Dragan N, Crisan M, Raileanu M, Crisan D, Ianculescu A, Oancea P, Somacescu S, Todan L, Stanica N, Vasile B (2014) Ceram Int 40:12273–12284

    Article  Google Scholar 

  59. Crisan D, Dragan N, Raileanu M, Crisan M, Ianculescu A, Luca D, Nastut A, Mardare D (2011) Appl Surf Sci 257:4227–4231

    Article  Google Scholar 

  60. Jeon H, Min YJ, Ahn SH, Hong SM, Shin JS, Kim JH, Lee KB (2012) Colloid Surf A 414:75–81

    Article  Google Scholar 

  61. Lopez T, Ventura HJ, Aguilar HD, Quintana P (2008) J Nanosci Nanotechnol 8:6608–6617

    Article  Google Scholar 

  62. Todan L, Dascalescu T, Preda S, Andronescu C, Munteanu C, Culita DC, Rusu A, State R, Zaharescu M (2014) Ceram Int 40:15693–15701

    Article  Google Scholar 

  63. Muralt P (2000) J Micromech Microeng 10:136–146

    Article  Google Scholar 

  64. Scott JF (2007) Science 315:954–959

    Article  Google Scholar 

  65. Roedel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovi D (2009) J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  66. Egerton L, Dillon DM (1959) J Am Ceram Soc 42:438–442

    Article  Google Scholar 

  67. Zhang S, Xia R, Shrout TR (2007) J Electroceram 19:251–257

    Article  Google Scholar 

  68. Kupec A, Mocioiu OC, Cilenšek J, Zaharescu M, Malič B (2014) Acta Chim Slov 61:548–554

    Google Scholar 

  69. Mihaiu S, Szilagyi IM, Atkinson I, Mocioiu OC, Hunyadi D, Pandele-Cusu J, Toader A, Munteanu C, Boyadjiev S, Madarasz J, Pokol G, Zaharescu M (2016) J Therm Anal Calorim 124:71–80

    Article  Google Scholar 

  70. Predoana L, Jitianu A, Preda S, Malic B, Zaharescu M (2015) J Therm Anal Calorim 119:145–153

    Article  Google Scholar 

  71. Predoana L, Malic B, Zaharescu M (2009) J Therm Anal Calorim 98:361–366

    Article  Google Scholar 

  72. Sanchez C, Ribot F (1994) New J Chem 18:1007–1047

    Google Scholar 

  73. Phani AR, Gammel FJ, Hack T, Haefke H (2005) Mater Corros 56:77–82

    Article  Google Scholar 

  74. Zandi-Zand R, Ershad-langroudi A, Rahimi A (2005) J Non-Cryst Solids 351:1307–1311

    Article  Google Scholar 

  75. Shen GX, Chen YC, Lin L, Lin CJ, Scantlebury D (2005) Electrochim Acta 50:5083–5089

    Article  Google Scholar 

  76. Gallardo J, Duran A, De Damborenea JJ (2004) Corros Sci 46:795–806

    Article  Google Scholar 

  77. Pepe A, Aparicio M, Cere S, Duran A (2004) J Non-Cryst Solids 348:162–171

    Article  Google Scholar 

  78. Fedrizzi L, Rodriguez FJ, Rossi S, Deflorian F, Di Maggio R (2001) Electrochim Acta 46:3715–3724

    Article  Google Scholar 

  79. Kumar N, Jyothirmayi A, Soma Raju KRC, Subasri R (2012) Ceram Int 38:6565–6572

    Article  Google Scholar 

  80. Mekeridis ED, Kartsonakis IA, Kordas G (2012) C Prog Org Coat 73:142–148

    Article  Google Scholar 

  81. Wittmar A, Wittmar M, Caparrotti H, Veith M (2011) J Sol-Gel Sci Technol 59:621–628

    Article  Google Scholar 

  82. Wittmar A, Wittmar M, Ulrich A, Caparrotti H, Veith M (2012) J Sol-Gel Sci Technol 61:600–612

    Article  Google Scholar 

  83. Dislich H (1963) DAS Patent 12 84 067

  84. Litner B (1988) J Non-Cryst Solids 100:378–382

    Article  Google Scholar 

  85. Kamiya K, Yoko T, Tanaka K, Takeuchi M (1990) J Non-Cryst Solids 121:182–187

    Article  Google Scholar 

  86. Matsuda A, Matsuno Y, Tatsumisago M, Minami T (1998) J Am Ceram Soc 81:2849–2852

    Article  Google Scholar 

  87. Suyal N, Hoebbel D, Menning Mand Schmidt H (1999) J Mater Chem 9:3061–3067

    Article  Google Scholar 

  88. Zaharescu M, Jitianu A, Brãileanu A, Badescu V, Pokol G, Madarász J, Novák Cs (1999) J Therm Anal Calorim 56:191–198

    Article  Google Scholar 

  89. Zaharescu M, Jitianu A, Brãileanu A, Madarász Jand Pokol G (2001) J Therm Anal Calorim 64:689–696

    Article  Google Scholar 

  90. Jitianu A, Gonzalez G, Klein LC (2015) J Am Ceram Soc 98:3673–3679

    Article  Google Scholar 

  91. Jitianu A, Lammers K, Georgia A, Arbuckle-Kiel LisaC (2012) J Therm Anal Calorim 107:1039–1045

    Article  Google Scholar 

  92. Newnham RE, Skinner DP, Cross LE (1978) Mater Res Bull 13:525–536

    Article  Google Scholar 

  93. Komarneni S (1992) J Mater Chem 2:1219–1230

    Article  Google Scholar 

  94. Avnir D, Klein LC, Levy D, Shubert U, Wojcik AB (1998) The chemistry of organic silicon, vol. 2, chap. 40, Organo-silica sol-gel materials, John Wiley & Sons Ltd, pp 2317–2362

  95. Zaharescu M (2015) Oxide and hybride nanocomposits obtiane by sol-gel method, In: Chitanu GC, Simionescu B (eds)Micro- and nanoaplications of polymers and polymer-based hybride materials. Academiei Române, Bucharest, pp 17–41

  96. Yoshio T, Kawaguchi C, Kanamaru F, Takahashi K (1981) J Non-Cryst Solids 43:129

    Article  Google Scholar 

  97. Lopez T, Mendez J, Zamudio T, Villa M (1992) Mater Chem Phys 30:161

    Article  Google Scholar 

  98. Lopez T, Mendez-Vivar J, Asmoza M (1993) Thermochim Acta 216:279

    Article  Google Scholar 

  99. Zaharescu M, Crisan M, Jitianu A, Crisan D, Meghea A, Rau I (2000) J Sol-Gel Sci Technol 19:631–635

    Article  Google Scholar 

  100. Jitianu A, Crisan M, Meghea A, Rau I, Zaharescu M (2002) J Mater Chem A 12:1401–1407

    Article  Google Scholar 

  101. Jitianu A, Răileanu M, Crişan M, Predoi D, Jitianu M, Stanciu L, Zaharescu M (2006) J Sol-Gel Sci Technol 40:317–323

    Article  Google Scholar 

  102. Predoana L, Gartner M, Teodorescu VS, Nicolescu M, Anastasescu M, Zaharescu M (2013) Rev Roum Chim 58:239–249

    Google Scholar 

  103. Zaharescu M, Wittmar A, Teodorescu V, Andronescu C, Wittmar M, Veith M (2009) Z Anorg Allg Chem 635:1915–1924

    Article  Google Scholar 

  104. Kappe CO, Pieber B, Dallinger D (2013) Angew Chem Int Ed 52:1088–1094

    Article  Google Scholar 

  105. Dudley GB, Richert R, Stiegman AE (2015) Chem Sci 6:2144–2152

    Article  Google Scholar 

  106. Das S, Mukhopadhyay AK, Datta S, Basu D (2009) B Mater Sci 32:1–13

    Article  Google Scholar 

  107. Leonelli C, Lojkowski W (2013) Chem Today 25:34–38

    Google Scholar 

  108. Kharade RR, Patil KR, Patil PS, Bhosale PN (2012) 47:1787–1793

  109. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Angew Chem Int Ed 50:11312–11359

    Article  Google Scholar 

  110. Zhu YJ, Chen F (2014) Chem Rev 114:6462–6555

    Article  Google Scholar 

  111. Khan NH, Agrawal S, Kureshy RI, Abdi SHR, Prathap KJ, Jasra RV (2008) Eur J Org Chem 2008:4511–4515

    Article  Google Scholar 

  112. Stanciu I, Predoana Cusu J, Preda S, Anastasescu M, Vojisavljević K, Malič B, Zaharescu M (2017) J Therm Anal Calorim 130:639–651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zaharescu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharescu, M., Predoana, L. & Pandele, J. Relevance of thermal analysis for sol–gel-derived nanomaterials. J Sol-Gel Sci Technol 86, 7–23 (2018). https://doi.org/10.1007/s10971-018-4583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4583-4

Keywords

Navigation