Journal of Sol-Gel Science and Technology

, Volume 85, Issue 3, pp 703–711 | Cite as

Novel adamantane-based periodic mesoporous organosilica film with ultralow dielectric constant and high mechanical strength

  • Guoping Zhang
  • Jiawei Zhang
  • Fangfang Niu
  • Fan Zhang
  • Songfang Zhao
  • Mingliang Wang
  • Yongju Gao
  • Rong Sun
  • Chingping Wong
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications


In this work, a novel bridged organosilane precursor, adamantane-bridged organosilane (ADBO), was synthesized successfully which was employed to prepare adamantane-based (ADH-based) periodic mesoporous organosilica (PMO) thin film in the presence of porogen and acid catalyst via evaporation-induced self-assembly (EISA) after spin-coating procedure. The resultant ADH-based PMO thin films were characterized by FTIR, NMR, TEM, and small-angle XRD. The ADH-based PMO thin film with weight ratio of porogen to ADBO (0.75:1) possesses low dielectric constant (1.55 ± 0.04@1 MHz), excellent Young’s modulus (6.69 ± 0.54 GPa), and ideal hydrophobic property (90.2° of water contact angle) simultaneously. These outstanding properties of ADH-based PMO film can be ascribed to lower polarity, lower density, and rigid cavity structure of adamantane, which suggests its potential application as high-performance low-κ material in next-generation microelectronics.


Periodic mesoporous organosilica Low electric constant Mechanical property Thin film 



This work was financially supported by National Natural Science Foundation of China (Grant No. 21201175, 61505123, and 21601065), NSFC––Guangdong Jointed Funding (U1601202), NSFC––Shenzhen Robot Jointed Funding (U1613215), Guangdong and Shenzhen Innovative Research Team Program (No. 2011D052, KYPT20121228160843692), Key Laboratory of Guangdong Province (2014B030301014), and R&D Funds for basic Research Program of Shenzhen (Grant No. JCYJ20120615140007998, 20150401145529012, and 20150525092940976) and Shenzhen Fundamental Research Program (Grant No. JCYJ20160331191741738 and JSGG20160229194437896).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4582_MOESM1_ESM.doc (748 kb)
Figure legends


  1. 1.
    Kohl PA (2011) Low-dielectric constant insulators for future integrated circuits and packages. Annu Rev Chem Biomol 2:379–401CrossRefGoogle Scholar
  2. 2.
    Baklanov MR, Maex K (2006) Porous low dielectric constant materials for microelectronics. Philos Trans R Soc A 364:201–215CrossRefGoogle Scholar
  3. 3.
    Shamiryan D, Abell T, Iacopi F, Maex K (2004) Low-k dielectric materials. Mater Today 7:34–39CrossRefGoogle Scholar
  4. 4.
    Hatton BD, Landskron K, Hunks WJ, Bennett MR, Shukaris D, Perovic DD, Ozin GA (2006) Materials chemistry for low-k materials. Mater Today 9:22–31CrossRefGoogle Scholar
  5. 5.
    Maex K, Baklanov MR, Shamiryan D, lacopi F, Brongersma SH, Yanovitskaya ZS (2003) Low dielectric constant materials for microelectronics. J Appl Phys 93:8793–8841CrossRefGoogle Scholar
  6. 6.
    Wang WD, Lofgreen JE, Ozin GA (2010) Why PMO? Towards functionality and utility of periodic mesoporous organosilicas. Small 6:2634–2642CrossRefGoogle Scholar
  7. 7.
    Wang WD, Grozea D, Kohli S, Perovic DD, Ozin GA (2011) Water repellent periodic mesoporous organosilicas. ACS Nano 5:1267–1275CrossRefGoogle Scholar
  8. 8.
    Yang QH, Liu J, Zhang L, Li C (2009) Functionalized periodic mesoporous organosilicas for catalysis. J Mater Chem A 19:1945–1955CrossRefGoogle Scholar
  9. 9.
    Lin CX, Qiao SZ, Yu CZ, Ismadji S, Lu GQ (2009) Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Micro Mesopor Mat 117:213–219CrossRefGoogle Scholar
  10. 10.
    Wang XQ, Lu DN, Austin R, Agarwal A, Mueller LJ, Liu Z, Wu JZ, Feng PY (2007) Protein refolding assisted by periodic mesoporous organosilicas. Langmuir 23:5735–5739CrossRefGoogle Scholar
  11. 11.
    Rebbin V, Schmidt R, Fröba M (2006) Spherical particles of phenylene-bridged periodic mesoporous organosilica for high-performance liquid chromatography. Angew Chem Int Ed 45:5210–5214CrossRefGoogle Scholar
  12. 12.
    Tani T, Mizoshita N, Inagaki S (2009) Luminescent periodic mesoporous organosilicas. J Mater Chem 19:4451–4456CrossRefGoogle Scholar
  13. 13.
    Hunks WJ, Ozin GA (2005) Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). J Mater Chem 15:3716–3724CrossRefGoogle Scholar
  14. 14.
    Wills AW, Michalak DJ, Ercius P, Rosenberg ER, Perciano T, Ushizima D, Runser R, Helms BA (2015) Block copolymer packing limits and interfacial reconfigurability in the assembly of periodic mesoporous organosilicas. Adv Funct Mater 25:4120–4128CrossRefGoogle Scholar
  15. 15.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251CrossRefGoogle Scholar
  16. 16.
    Liu HC, Su WC, Liu YL (2011) Self-assembled benzoxazine-bridged polysilsesquioxanes exhibiting ultralow-dielectric constants and yellow-light photoluminescent emission. J Mater Chem 21:7182–7187CrossRefGoogle Scholar
  17. 17.
    Hatton BD, Landskron K, Whitnall W, Perovic DD, Ozin GA (2005) Spin-coated periodic mesoporous organosilica thin film-towards a new generation of low-dielectric-constant materials. Adv Funct Mater 15:823–829CrossRefGoogle Scholar
  18. 18.
    Jiang T, Zhu B, Ding SJ, Fan ZY, Zhang DW (2014) High-performance ultralow dielectric constant carbon-bridged mesoporous organosilica films for advanced interconnects. J Mater Chem C 2:6502–6510CrossRefGoogle Scholar
  19. 19.
    Huang YQ, Economy J (2006) New high strength low-k spin-on thin films for IC application. Macromolecules 39:1850–1853CrossRefGoogle Scholar
  20. 20.
    Edelstein D (2008) Extendibility of Cu/low-k/airgap BEOL. Electrochem Soc 28:2073Google Scholar
  21. 21.
    Guo Y, Mylonakis A, Zhang ZT, Yang GL, Lelkes PI, Che SN, Lu QH, Wei Y (2008) Templated synthesis of electroactive periodic mesoporous organosilica bridged with oligoaniline. Chem-Eur J 14:2909–2917CrossRefGoogle Scholar
  22. 22.
    Landskron K, Ozin GA (2005) Periodic mesoporous organosilicas: self-assembly from bridged cyclic silsesquioxane precursors. Angew Chem Int Ed 44:2107–2109CrossRefGoogle Scholar
  23. 23.
    Gao L, Wei F, Zhou Y, Fan XX, Wang Y, Zhu JH (2009) Periodic mesoporous organosilica materials: self-assembly of carbamothioic acid-bridged organosilane precursors. Chem-Eur J 15:8310–8318CrossRefGoogle Scholar
  24. 24.
    Schachtschneider A, Wessig M, Spitzbarth M, Donner A, Fischer C, Drescher M, Polarz S (2015) Directional materials-nanoporous organosilica monoliths with multiple gradients prepared using click chemistry. Angew Chem Int Ed 127:10611–10615CrossRefGoogle Scholar
  25. 25.
    Seino M, Wang WD, Lofgreen JE, Puzzo DP, Manabe T, Ozin GA (2011) Low-k periodic mesoporous organosilica with air walls: POSS-PMO. J Am Chem Soc 133:18082–18085CrossRefGoogle Scholar
  26. 26.
    Lu HY, Teng CL, Kung CH, Wan BZ (2011) Preparing mesoporous low-k films with high mechanical strength from noncrystalline silica particles. Ind Eng Chem Res 50:3265–3273CrossRefGoogle Scholar
  27. 27.
    Goethals F, Levrau E, Pollefeyt G, Baklanov MR, Ciofi I, Vanstreels K, Detavernier C, Driessche IV, PVD Voort (2013) Sealed ultra low-k organosilica films with improved electrical, mechanical and chemical properties. J Mater Chem C1:3961–3966Google Scholar
  28. 28.
    Yuan H, Xu JQ, Xie LL (2011) Ultra low-dielectric-constant methylated mesoporous silica films with high hydrophobicity and stability. Mater Chem Phys 129:1195–1200CrossRefGoogle Scholar
  29. 29.
    Rathore JS, Interrante LV, Dubois G (2008) Ultra low-k films derived from hyperbranched polycarbosilanes (HBPCS). Adv Funct Mater 18:4022–4028CrossRefGoogle Scholar
  30. 30.
    Zhang JW, Zhang GP, Gao YJ, Sun R, Wong CP (2016) Ultra-low-κ HFPDB-based periodic mesoporous organosilica film with high mechanical strength for interlayer dielectric. J Mater Sci 51:7966–7976CrossRefGoogle Scholar
  31. 31.
    Zhang GP, George TF, Assoufid L, Mansoori GA (2007) First-principles simulation of the interaction between adamantane and an atomic-force-microscope tip. Phys Rev B 75:035413CrossRefGoogle Scholar
  32. 32.
    Fort RC, Schleyer PV (1964) Adamantane: consequences of the diamondoid structure. Chem Rev 64:277–300CrossRefGoogle Scholar
  33. 33.
    Tong J, Zhang H, Gu J, Li L, Ma C, Zhao J, Wang C (2016) Poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol)-assisted synthesis of graphene/polyaniline composites as high-performance supercapacitor electrodes. J Mater Sci 51:1966–1977CrossRefGoogle Scholar
  34. 34.
    Landskron K, Hatton BD, Perovic DD, Ozin GA (2003) Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings. Science 302:266–269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronics EngineeringShenzhen UniversityShenzhenChina
  3. 3.School of Material Science and EngineeringUniversity of JinanJinanChina
  4. 4.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  5. 5.Faculty of EngineeringThe Chinese University of Hong KongHong KongChina

Personalised recommendations