Advertisement

Journal of Sol-Gel Science and Technology

, Volume 85, Issue 2, pp 318–329 | Cite as

Preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/boric acid/poly(N-methyl benzamide)-b-poly(propylene oxide) block copolymer nanocomposites – no weight loss behavior of the block copolymer in the nanocomposites even after calcination at 800 °C

  • Yuta Aomi
  • Yoshiyuki Oishi
  • Yuji Shibasaki
  • Yuki Aikawa
  • Mitsutoshi Jikei
  • Masakazu Nishida
  • Shohei Yamazaki
  • Hideo Sawada
Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • 148 Downloads

Abstract

Fluoroalkyl end-capped vinyltirimethoxysilane oligomeric silica/boric acid nanocomposites [RF-(VM-SiO2) n -RF/B(OH)3] were prepared by the composite reaction of the corresponding fluorinated oligomer [RF-(CH2CHSi(OMe)3) n -RF, n = 2, 3; RF = CF(CF3)OC3F7: RF-(VM) n -RF] with boric acid. The nanocomposites thus obtained were tried to interact with the thermoplastic elastomers such as poly(N-methyl benzamide)-b-poly(propylene oxide) block copolymers [(MAB) m-m -b-PPO32: m = 5, 6, 7, and 8] and poly(ethersulfone)-b-poly(tetrahydrofuran)-b-poly(ethersulfone) triblock copolymer [PES-b-PTHF-b-PES] under alkaline conditions to afford the corresponding RF-(VM-SiO2) n -RF/B(OH)3/thermoplastic elastomers nanocomposites. We also tried to prepare the corresponding RF-(VM-SiO2) n -RF/thermoplastic elastomers nanocomposites under similar conditions, for comparison. In these thermoplastic elastomers, PES-b-PTHF-b-PES triblock copolymers cannot interact with the RF-(VM-SiO2) n -RF/B(OH)3 nanocomposites or the RF-(VM-SiO2) n -RF oligomeric nanoparticles to supply the expected nanocomposite products. However, it was demonstrated that the (MAB) m-m -b-PPO32 block copolymers can react with the RF-(VM-SiO2) n -RF/B(OH)3 nanocomposites under alkaline conditions to afford the RF-(VM-SiO2) n -RF/B(OH)3/(MAB) m-m -b-PPO32 nanocomposites, providing no weight loss characteristic corresponding to the contents of the block copolymers in the composites even after calcination at 800 °C, although these expected nanocomposites were isolated without purification process. The RF-(VM-SiO2) n -RF/(MAB) 5-5 -b-PPO32 nanocomposites, which were isolated under similar process, were also able to supply no weight loss in proportion to the content of the copolymer in the nanocomposites even after calcination at 800 °C.

Graphical abstract

Open image in new window

Keywords

Fluorinated oligomer Silica Boric acid Nanocomposite Thermoplastic elastomer No weight loss 

Notes

Acknowledgements

This work was financially supported by the Grant Co-funded by 3NUNT (National Universities of Northern Tohoku), Japan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chrusciel JJ, Janowska G, Fejdys M (2012) J Therm Anal Calorim 109:1049–1058CrossRefGoogle Scholar
  2. 2.
    Liao N, Xue W, Zhou H, Zhang M (2014) J Alloy Compd 610:45–49CrossRefGoogle Scholar
  3. 3.
    Sreejith KJ, Prabhakaran PV, Laly KP, Dimple R, Packirisamy S (2016) Ceram Int 42:15285–15293CrossRefGoogle Scholar
  4. 4.
    Soraru GD, Babonneau F, Maurina S, Vicens J (1998) J Non-Cryst Solids 224:173–1CrossRefGoogle Scholar
  5. 5.
    Lu AY, Hamerton I (2002) Prog Polym Sci 27:1661–1712CrossRefGoogle Scholar
  6. 6.
    Xie S, Wang Y, Lei Y, Wang B, Wu N, Gou Y, Fang D (2015) RSC Adv 5:64911–64917CrossRefGoogle Scholar
  7. 7.
    Yajima S, Shishido T, Hamano M (1997) Nature 266:522–524CrossRefGoogle Scholar
  8. 8.
    Woilliams HM, Dawson EA, Barnes PA, Rand B, Brydson RMD (2007) Micro Mesoporous Mater 99:261–267CrossRefGoogle Scholar
  9. 9.
    Li L, Zhao J, Li H, Zhao T (2013) Appl Organo Chem 27:723–728CrossRefGoogle Scholar
  10. 10.
    Yajima S, Hayashi J, Okamura K (1977) Nature 266:521–522CrossRefGoogle Scholar
  11. 11.
    Hoshi S, Kojima A (1996) J Mater Res 11:2536–2540CrossRefGoogle Scholar
  12. 12.
    Hoshi S, Kojima A, Endou H, Otani S, Satou T, Nakaido Y, Hasegawa Y (1994) Tanso 161:23CrossRefGoogle Scholar
  13. 13.
    Devapal D, Packirisamy S, Sreejith KJ, Ravindran PV, George BK (2010) J Inorg Organomet Polym 20:666–674CrossRefGoogle Scholar
  14. 14.
    Schiavon MA, Armelin NA, Yoshida IVP (2008) Mater Chem Phys 112:1047–1054CrossRefGoogle Scholar
  15. 15.
    Bai HW, Wen G, Huang XX, Han ZX, Zhong B, Hu ZX, Zhang XD (2011) J Eur Ceram Soc 31:977–940CrossRefGoogle Scholar
  16. 16.
    Wenjun Z, Jian S, Youcai C, Xueqin W, Jingli Z (2012) CIES J 63:3365–3371Google Scholar
  17. 17.
    Bai HW, Wen G, Huang XX, Han ZX, Zhong B, Hu ZX, Zhang XD (2011) J Eur Ceram Soc 31:931–940CrossRefGoogle Scholar
  18. 18.
    Pena-Alonso R, Soraru GD (2007) J Sol-Gel Sci Technol 43:313–319CrossRefGoogle Scholar
  19. 19.
    Siqueira RL, Yoshida IVP, Paradini LC, Schiavon MA (2007) Mater Res 10:147–151CrossRefGoogle Scholar
  20. 20.
    Soraru GD, Babonneau F, Gervais C, Dallabona N (2000) J Sol-Gel Sci Technol 18:11–19CrossRefGoogle Scholar
  21. 21.
    Ameduri B, Sawada H (eds) (2016) Fluorinated polymers: vol 1. Synthesis, Properties, Processing and Simulation. RSC, CambridgeGoogle Scholar
  22. 22.
    Ameduri B, Sawada H (eds) (2016) Fluorinated polymers: vol 2. Applications. RSC, CambridgeGoogle Scholar
  23. 23.
    Sawada H (2007) Polym J 39:637–650CrossRefGoogle Scholar
  24. 24.
    Sawada H (2007) Prog Polym Sci 32:509–533CrossRefGoogle Scholar
  25. 25.
    Sawada H (2012) Polym Chem 3:46–65CrossRefGoogle Scholar
  26. 26.
    Takashima H, Iwaki K, Furukuwa R, Takishita K, Sawada H (2008) J Colloid Interface Sci 320:436–444CrossRefGoogle Scholar
  27. 27.
    Kijima T, Nishida M, Fukaya H, Yoshida M, Sawada H (2013) J Polym Sci Part A: Polym Chem 51:2555–2564CrossRefGoogle Scholar
  28. 28.
    Mugisawa M, Ohnishi K, Sawada H (2007) Langmuir 23:5848–5851CrossRefGoogle Scholar
  29. 29.
    Mugisawa M, Sawada H (2008) Langmuir 24:9215–9218CrossRefGoogle Scholar
  30. 30.
    Sawada H, Sasaki A, Sasazawa K (2009) Colloid Surf A: Physicochem Eng Asp 337:57–60CrossRefGoogle Scholar
  31. 31.
    Mugisawa M, Kasai R, Sawada H (2009) Langmuir 25:415–421CrossRefGoogle Scholar
  32. 32.
    Soma S, Mizutani Y, Sugiya M, Sawada H (2014) J Polym Sci, Part A: Polym Chem 52:1869–1877CrossRefGoogle Scholar
  33. 33.
    Sawada E, Kakehi H, Chounan Y, Miura M, Sato Y, Isu N, Sawada H (2010) Compos Part B 41:498–502CrossRefGoogle Scholar
  34. 34.
    Guo S, Yoshioka H, Kakehi H, Kato Y, Miura M, Isu N, Ameduri B, Sawada H (2012) J Colloid Interface Sci 387:141–145CrossRefGoogle Scholar
  35. 35.
    Guo S, Yoshioka H, Kato Y, Kakehi H, Miura M, Isu N, Manseri A, Sawada H, Ameduri B (2014) Eur Polym J 58:79–89CrossRefGoogle Scholar
  36. 36.
    Mulazim Y, Kahraman MV, Apohan NK, Kiziltas S, Gungor A (2011) J Appl Polym Sci 120:2112–2121CrossRefGoogle Scholar
  37. 37.
    Aomi Y, Nishida M, Sawada H (2016) J Polym Sci, Part A: Polym Chem 54:3835–3845CrossRefGoogle Scholar
  38. 38.
    Sawada H, Nakayama M, J (1991) Chem Soc Chem Commun 677–678Google Scholar
  39. 39.
    Mori T, Masukawa S, Kikkawa T, Fujimori A, Satoh A, Matsumoto K, Jikei M, Oishi Y, Shibasaki Y (2017) RSC Adv 7:33812–33821CrossRefGoogle Scholar
  40. 40.
    Jikei M, Aikawa Y, Matsumoto K (2016) High Perform Polym 28:1015–1023CrossRefGoogle Scholar
  41. 41.
    Sawada H, Suzuki T, Takashima H, Takishita K (2008) Colloid Polym Sci 286:1569–1574CrossRefGoogle Scholar
  42. 42.
    Gervais C, Babonneau F, Dallabonna N, Soraru GD (2001) J Am Cerm Soc 84:2160–2164CrossRefGoogle Scholar
  43. 43.
    Soraru GD, Babonneau F, Maurina S, Vicens J (1998) J Non-Crystallogr Solids 224:173–183CrossRefGoogle Scholar
  44. 44.
    Yamada K, Shimizu T, Deguchi K, Ando S, Kamada H, Kobayashi T (2011) Polym. Preprints Jpn. 60, No 1, 2D26Google Scholar
  45. 45.
    Du L-S, Stebbins JF (2005) J Non-Cryst Solids 351:3508–3520CrossRefGoogle Scholar
  46. 46.
    Sen S, Xu Z, Stebbins JF (1998) J Non-Cryst Solids 1998:29–40. 226CrossRefGoogle Scholar
  47. 47.
    Turner GL, Smith KA, Kirkpatrick RJ, Oldfield E (1986) J Magn Res 67:544–550Google Scholar
  48. 48.
    Sawada H, Narumi T, Kodama S, Kamijo M, Ebara R, Sugiya M, Iwasaki Y (2007) Colloid Polym Sci 285:977–983CrossRefGoogle Scholar
  49. 49.
    Sawada H, Tashima T, Kodama S (2008) Polym Adv Technol 19:739–747CrossRefGoogle Scholar
  50. 50.
    Sawada H, Kakehi H, Tashima T, Nishiyama Y, Miura M, Isu N (2009) J Appl Polym Sci 112:3482–3487CrossRefGoogle Scholar
  51. 51.
    Goto Y, Matsuki Y, Nishida M, Oyama S, Chikama K, Sawada H (2011) Colloid Polym Sci 290:11–21CrossRefGoogle Scholar
  52. 52.
    Sawada H, Tashima T, Nishiyama Y, Kikuchi M, Kostov G, Goto Y, Ameduri B (2011) Macromolecules 44:1114–1124CrossRefGoogle Scholar
  53. 53.
    Sawada H, Matsuki Y, Goto Y, Kodama S, Sugiya M, Nishiyama Y (2010) Bull Chem Soc Jpn 83:75–81CrossRefGoogle Scholar
  54. 54.
    Sawada H, Kikuchi M, Nishida M, Polym. Sci. Part J (2011) A: Polym Chem 2011:1070–1078. 49Google Scholar
  55. 55.
    Sawada H, Tashima T, Kakehi H, Nishiyama Y, Kikuchi M, Miura M, Sato Y, Isu N (2010) Polym J 42:167–171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Yuta Aomi
    • 1
  • Yoshiyuki Oishi
    • 2
  • Yuji Shibasaki
    • 2
  • Yuki Aikawa
    • 3
  • Mitsutoshi Jikei
    • 3
  • Masakazu Nishida
    • 4
  • Shohei Yamazaki
    • 1
  • Hideo Sawada
    • 1
  1. 1.Department of Frontier Materials Chemistry, Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan
  2. 2.Department of Chemistry and Bioengineering, Graduate School of EngineeringIwate UniversityIwateJapan
  3. 3.Department of Applied Chemistry, Graduate School of Engineering and Resource ScienceAkita UniversityAkitaJapan
  4. 4.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations