Skip to main content
Log in

Synthesis of magnesium aluminate spinel nanopowder by sol–gel and low-temperature processing

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanospinel MgAl2O4 powder was obtained by a sol–gel method at low-temperature processing. It was synthesized using aluminum tri-sec-butoxide and magnesium nitrate hexahydrate as precursors, in an acid medium at 80 °C. Heat treatments of the dried gel were performed from 200 to 1000 °C (∆T = 100 °C) and the powders were characterized by SEM, XRD, TG/DTA, FT-IR, and HR-TEM. A mixture of semispherical nanoparticles (<50 nm) of boehmite and unreacted magnesium nitrate was found after the sol–gel reaction. According to HR-TEM and XRD results, a low-crystalline spinel MgAl2O4 started forming at 300 °C, which is a lower temperature than the reported for the same phase in other works. A mechanism of reaction is proposed to explain the formation of spinel at low temperature. At 800 and 900 °C a spinel mono-phase totally crystalline was observed. At 1000 °C, the spinel MgAl2O4 phase is well defined but a second phase, magnesium oxide, was found to be about 6% of the final composition. The crystal sizes were 2.272 ± 0.054, 5.222 ± 0.030, 11.610 ± 0.064, and 25.140 ± 0.20 nm for the material heat treated at 700, 800, 900, and 1000 °C, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baudín C, Martínez R, Pena P (1995) High-temperature mechanical behavior of stoichiometric magnesium spinel. J Am Ceram Soc 78:1857–1862

    Article  Google Scholar 

  2. Baker WTLJG (1967) Reactive magnesia spinel, preparation and properties. Am Ceram Soc Bull 46:1094–1097

    Google Scholar 

  3. Liu X, Wang H, Tu B et al (2014) Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic prepared by pressureless sintering. J Am Ceram Soc 97:63–66

    Article  Google Scholar 

  4. Krell A, Klimke J, Hutzler T (2009) Advanced spinel and sub-µm Al2O3 for transparent armour applications. J Eur Ceram Soc 29:275–281

    Article  Google Scholar 

  5. Krell A, Klimke J, Hutzler T (2009) Transparent compact ceramics: Inherent physical issues. Opt Mater 31:1144–1150

    Article  Google Scholar 

  6. Krell A, Hutzler T, Klimke J, Potthoff A (2010) Fine-grained transparent spinel windows by the processing of different nanopowders. J Am Ceram Soc 93:2656–2666

    Article  Google Scholar 

  7. Sands JM, Fountzoulas CG, Gilde GA, Patel PJ (2009) Modelling transparent ceramics to improve military armour. J Eur Ceram Soc 29:261–266

    Article  Google Scholar 

  8. Shimizu Y, Arai H, Seiyama T (1985) Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sens Actuators 7:11–22

    Article  Google Scholar 

  9. Laobuthee A, Koonsaeng N (2005) Doped MgAl2O4 spinel screen print thick film as sensing material for humidity measurement. Int J Mater Struct Reliab 3:95–103

    Google Scholar 

  10. Seiyama T, Yamazoe N, Arai H (1983) Ceramic humidity sensors. Sens Actuators 4:85–96

    Article  Google Scholar 

  11. Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58:63–112

    Article  Google Scholar 

  12. Salmones J, Galicia JA, Wang JA et al (2000) Synthesis and characterization of nanocrystallite MgAl2O4 spinels as catalysts support. J Mater Sci Lett 19:1033–1037

    Article  Google Scholar 

  13. Guo J, Lou H, Zhao H et al (2004) Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Mater Lett 58:1920–1923

    Article  Google Scholar 

  14. Roy DW, Hastert JL (1983) Polycrystalline MgAl2O4 spinel for high temperature windows. In: Smothers WJ (ed) Ceramic Engineering and Science Proceedings 4:502–509

  15. Hamano K, Nakagawa Z, Kanai T et al (1986) Effect of addition of chloride on sintering of spinel. Rep Res Lab Eng Mater Tokyo Inst Technol 11:93–102

    Google Scholar 

  16. Sarkar R, Das SK, Banerjee G (2003) Effect of additives on the densification of reaction sintered and presynthesised spinels. Ceram Int 29:55–59

    Article  Google Scholar 

  17. Li JG, Ikegami T, Lee JH et al (2001) Synthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. J Eur Ceram Soc 21:139–148

    Article  Google Scholar 

  18. Serivalsatit K, Teerasoradech S, Saelee A (2013) Synthesis of magnesium aluminate spinel nanoparticles by co-precipitation method. J Sci Technol 19:265–270

    Google Scholar 

  19. Shiono T, Shiono K, Miyamoto K, Pezzotti G (2000) Synthesis and characterization of MgAl2O4 spinel precursor from a heterogeneous alkoxide solution containing fine MgO powder. J Am Ceram Soc 83:235–237

    Article  Google Scholar 

  20. Wu X, Shao G, Shen X et al (2017) The low temperature fabrication of nanocrystalline MgAl2O4 spinel aerogel by a non-alkoxide sol-gel route. Mater Lett 207:137–140

    Article  Google Scholar 

  21. Park KY, Choi JG, Sung K, Kim Y (2006) Solid-precursor vaporizer for aerosol reactors: synthesis of magnesium aluminate nanoparticles by thermal decomposition of magnesium aluminum tert-butoxide. J Nanoparticle Res 8:1075–1081

    Article  Google Scholar 

  22. Kutty PVM, Dasgupta S (2013) Low temperature synthesis of nanocrystalline magnesium aluminate spinel by a soft chemical method. Ceram Int 39:7891–7894

    Article  Google Scholar 

  23. Wang C-T, Lin L-S, Yang S-J (1992) Preparation of MgAl2O4 spinel powders via freeze-drying of alkoxide precursors. J Am Ceram Soc 75:2240–2243

    Article  Google Scholar 

  24. Bickmore CR, Waldner KF, Treadwell DR, Laine RM (1996) Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide. J Am Ceram Soc 79:1419–1423

    Article  Google Scholar 

  25. Pǎcurariu C, Lazǎu I, Ecsedi Z et al (2007) New synthesis methods of MgAl2O4 spinel. J Eur Ceram Soc 27:707–710

    Article  Google Scholar 

  26. Nuernberg GDB, Foletto EL, Probst LFD et al (2012) A novel synthetic route for magnesium aluminate (MgAl2O4) particles using metal – chitosan complexation method. Chem Eng J 193–194:211–214

    Article  Google Scholar 

  27. Zhang X (2009) Hydrothermal synthesis and catalytic performance of high-surface-area mesoporous nanocrystallite MgAl2O4 as catalyst support. Mater Chem Phys 116:415–420

    Article  Google Scholar 

  28. Guo J, Lou H, Zhao H et al (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A Gen 273:75–82

    Article  Google Scholar 

  29. Alinejad B, Sarpoolaky H, Beitollahi A et al (2008) Synthesis and characterization of nanocrystalline MgAl2O4 spinel via sucrose process. Mater Res Bull 43:1188–1194

    Article  Google Scholar 

  30. Bai J, Liu J, Li C et al (2011) Mixture of fuels approach for solution combustion synthesis of nanoscale MgAl2O4 powders. Adv Powder Technol 22:72–76

    Article  Google Scholar 

  31. Saberi A, Golestani-Fard F, Sarpoolaky H et al (2008) Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route. J Alloys Compd 462:142–146

    Article  Google Scholar 

  32. Walker EH, Owens JW, Etienne M, Walker D (2002) The novel low temperature synthesis of nanocrystalline MgAl2O4 spinel using “gel” precursors. Mater Res Bull 37:1041–1050

    Article  Google Scholar 

  33. Li JG, Ikegami T, Lee JH et al (2001) A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder. Ceram Int 27:481–489

    Article  Google Scholar 

  34. Habibi N, Wang Y, Arandiyan H, Rezaei M (2017) Low-temperature synthesis of mesoporous nanocrystalline magnesium aluminate (MgAl2O4) spinel with high surface area using a novel modified sol-gel method. Adv Powder Technol 28:1249–1257

    Article  Google Scholar 

  35. Bocanegra SA, Ballarini AD, Scelza OA, de Miguel SR (2008) The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts. Mater Chem Phys 111:534–541

    Article  Google Scholar 

  36. Jurado LT, Arévalo Hernández RM, Rocha-Rangel E (2013) Sol-gel synthesis of mullite starting from different inorganic precursors. J Powder Technol 2013:1–7

    Article  Google Scholar 

  37. Assih T, Ayral A, Abenoza M, Phalippou J (1988) Raman study of alumina gels. J Mater Sci 23:3326–3331

    Article  Google Scholar 

  38. Du X, Liu Y, Li L et al (2014) Synthesis of MgAl2O4 spinel nanoparticles via polymer-gel and isolation-medium-assisted calcination. J Mater Res 29:2921–2927

    Article  Google Scholar 

  39. Krell A, Waetzig K, Klimke J (2012) Influence of the structure of MgO·nAl2O3 spinel lattices on transparent ceramics processing and properties. J Eur Ceram Soc 32:2887–2898

    Article  Google Scholar 

  40. Koichumanova K, Sai Sankar Gupta KB, Lefferts L et al (2015) An in situ ATR-IR spectroscopy study of aluminas under aqueous phase reforming conditions. Phys Chem Chem Phys 17:23795–23804

    Article  Google Scholar 

  41. Musić S, Dragčević D, Popović S (1999) Hydrothermal crystallization of boehmite from freshly precipitated aluminum hydroxide. Mater Lett 40:269–274

    Article  Google Scholar 

  42. Chang T-CG, Irish DE (1973) Raman and infrared studies of Hexa-, Tetra-, and dihydrates of crystalline magnesium nitrate. Can J Chem 51:118–125

    Article  Google Scholar 

  43. Al-Abadleh HA, Grassian VH (2003) Phase transitions in magnesium nitrate thin films: a transmission FT-IR study of the deliquescence and efflorescence of nitric acid reacted magnesium oxide interfaces. J Phys Chem B 107:10829–10839

    Article  Google Scholar 

  44. Jayarambabu N, Siva Kumari B, Venkateswara Rao K, Prabhu Y (2016) Enhancement of growth in maize by biogenic-synthesized MgO nanoparticles. Int J Pure Appl Zool 4:262–270

    Google Scholar 

  45. Boumaza A, Favaro L, Lédion J et al (2009) Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J Solid State Chem 182:1171–1176

    Article  Google Scholar 

  46. Chandradass J, Kim KH (2010) Effect of precursor ratios on the synthesis of MgAl2O4 nanoparticles by a reverse microemulsion method. J Ceram Process Res 11:96–99

    Google Scholar 

  47. Samoila P, Sacarescu L, Borhan AI et al (2015) Magnetic properties of nanosized Gd doped Ni–Mn–Cr ferrites prepared using the sol–gel autocombustion technique. J Magn Magn Mater 378:92–97

    Article  Google Scholar 

  48. Karimi Z, Mohammadifar Y, Shokrollahi H et al (2014) Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J Magn Magn Mater 361:150–156

    Article  Google Scholar 

  49. Parmentier J, Richard-Plouet M, Vilminot S (1998) Influence of the sol-gel synthesis on the formation of spinel MgAl2O4. Mater Res Bull 33:1717–1724

    Article  Google Scholar 

  50. ADAK AK, SAHA SK, PRAMANIK P (1997) Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique. J Mater Sci Lett 16:234–235

    Article  Google Scholar 

  51. Madarász J, Varga PP, Pokol G (2007) Evolved gas analyses (TG/DTA-MS and TG-FTIR) on dehydration and pyrolysis of magnesium nitrate hexahydrate in air and nitrogen. J Anal Appl Pyrolysis 79:475–478

    Article  Google Scholar 

  52. Hassan DB, Rekik W, Mefteh FB, Naïli H (2017) Thermal decomposition and biological activity of two supramolecular hybrid nitrates templated by piperazine. J Therm Anal Calorim 127:1553–1565

    Article  Google Scholar 

  53. Tsukada T, Segawa H, Yasumori A, Okada K (1999) Crystallinity of boehmite and its effect on the phase transition temperature of alumina. J Mater Chem 9:549–553

  54. Karim MR, Rahman MA, Miah MAJ et al (2011) Synthesis of γ-Alumina Particles and Surface Characterization. Open Colloid Sci J 4:32–36

    Article  Google Scholar 

  55. Fu P, Lu W, Lei W et al (2013) Thermal stability and microstructure characterization of MgAl2O4 nanoparticles synthesized by reverse microemulsion method. Mater Res 16:844–849

    Article  Google Scholar 

  56. Sauter C, Emin MA, Schuchmann HP, Tavman S (2008) Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem 15:517–523

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by IPN (SIP-20160488 and SIP-20150265). L. Zarazúa-Villalobos also acknowledges CONACYT (Mexican Council for Science and Technology) and COFAA-IPN for the scholarships granted to pursue her Ph.D. studies. The authors acknowledge Center for Nano Sciences and Micro and Nanotechnologies (CNMN) of the Instituto Politécnico Nacional (Mexico) for the HR-TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zarazúa-Villalobos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarazúa-Villalobos, L., Téllez-Jurado, L., Vargas-Becerril, N. et al. Synthesis of magnesium aluminate spinel nanopowder by sol–gel and low-temperature processing. J Sol-Gel Sci Technol 85, 110–120 (2018). https://doi.org/10.1007/s10971-017-4526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4526-5

Keywords

Navigation