Skip to main content
Log in

Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work we prepared hybrid particles based on cellulose nanocrystals and titanium dioxide nanoparticles and studied their aggregate stability for a wide range of the components ratios. Electrosurface properties of cellulose nanocrystals and TiO2 greatly influence on morphology and properties of the hybrid particles. Sufficient amount of TiO2 nanoparticles in the hybrid dispersions make it possible to completely cover cellulose nanocrystals surface and form a core-shell structure. Derjaguin–Landau–Verwey–Overbeek theory calculations confirmed experimental data and possibility of TiO2 monolayer covering of cellulose nanocrystals surface. Summarizing the findings, we conclude about the mechanism of interaction between cellulose nanocrystals and titanium dioxide—at the first stage particles are attracted to one another due to long-range electrostatic forces; at the second stage hydrogen bonds are formed. It is found that control of the surface potential allows to obtain stable colloidal hybrid dispersions (having negative-charged or positive-charged particles), or hybrid systems with a neutral surface charge.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pomogailo AD, Dzhardimalieva GI (2014) Nanostructured materials preparation via condensation ways. Springer, Dodrecht—Heidelberg—New York—London

    Book  Google Scholar 

  2. Shchipunov YA, Karpenko TY (2004) Hybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique. Langmuir 20:3882–3887

    Article  CAS  Google Scholar 

  3. Gubanova GN, Kononova SV, Cristea M, Timpu D, Romashkova KA, Korytkova EN, Saprikina NN, Maslennikova TP (2015) Morphology and mechanical properties of polymer-inorganic nanocomposite containing triple chain fibrous Na-Mg hydrosilicate. Russ J Gen Chem 85:1496–1505

    Article  CAS  Google Scholar 

  4. Kononova SV, Korytkova EN, Maslennikova TP, Romashkova KA, Kruchinina EV, Potokin IL, Gusarov VV (2010) Polymer-inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation. Russ J Gen Chem 80:1136–1142

    Article  CAS  Google Scholar 

  5. Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci: Nano 1:302–316

    CAS  Google Scholar 

  6. Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14:1529–1540

    Article  CAS  Google Scholar 

  7. Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201

    Article  CAS  Google Scholar 

  8. Mautner A, Lee KY, Tammelin T, Mathew AP, Nedoma AJ, Li K, Bismarck A (2015) Cellulose nanopapers as tight aqueous ultra-filtration membranes. React FunctPolym 86:209–214

    Article  CAS  Google Scholar 

  9. Sitnikov PA, Belykh AG, Fedoseev MS, Vaseneva IN, Kuchin AV (2008) Modification of epoxyanhydride polymers with aluminum oxide. Russ J Appl Chem 81:826–829

    Article  CAS  Google Scholar 

  10. De Salvi DT, Barud HS, Caiut JMA, Messaddeq Y, Ribeiro SJ (2012) Self-supported bacterial cellulose/boehmite organic–inorganic hybrid films. J Sol-Gel Sci Technol 63:211–218

    Article  CAS  Google Scholar 

  11. Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425

    Article  CAS  Google Scholar 

  12. Ivanova A, Fattakhova-Rohlfing D, Kayaalp BE, Rathouský J, Bein T (2014) Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J Am Chem Soc 136:5930–5937

    Article  CAS  Google Scholar 

  13. Yoldas BE (1986) Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J Mater Sci 21:1087–1092

    Article  CAS  Google Scholar 

  14. Torlopov MA, Udoratina EV, Martakov IS, Sitnikov PA (2017) Cellulose nanocrystals prepared in H3PW12O40-acetic acid system. Cellulose 24:2153–2162

    Article  CAS  Google Scholar 

  15. Martakov IS, Krivoshapkin PV, Torlopov MA, Mikhailov VI, Krivoshapkina EF (2016) Study on the stability of hybrid dispersions of cellulose nanocrystals and aluminum oxide. Glass Phys Chem 42:590–596

    Article  CAS  Google Scholar 

  16. Hogg R, Healy TW, Furstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62:1638–1651

    Article  CAS  Google Scholar 

  17. Golikova EV, Burdina NM, Vysokovskaya NA (2002) Aggregation stability of SiO2, FeOOH, ZrO2, CeO2, and natural diamond sols and their binary mixtures: 2. The photometric study of heterocoagulation of SiO2–FeOOH, SiO2–ZrO2, SiO2–CeO2, and CeO2–natural diamond binary systems in KCl solutions. Colloid J 64:142–148

    Article  CAS  Google Scholar 

  18. Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle Deposition and Aggregation Measurement, Modelling and Simulation. Elsevier, Butterworth-Heinemann, Woburn

  19. Lu S, Pugh RJ, Forssberg E (2005) Interfacial Separation of Particles. Elsevier, Amsterdam

    Google Scholar 

  20. Baturenko DYU, Chernoberezhskii YUM, Lorentsson AV, Zhukov AN (2003) Effect of pH on the aggregation stability of microcrystalline cellulose dispersions in aqueous 0.1 M NaCl solutions. Colloid J 65:666–671

    Article  CAS  Google Scholar 

  21. Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2:2924–2932

    Article  CAS  Google Scholar 

  22. Fu G, He A, Jin Y, Cheng Q, Song J (2012) Fabrication of hollow silica nanorods using nanocrystalline cellulose as templates. BioResources 7:2319–2329

    CAS  Google Scholar 

  23. Mashkour M, Kimura T, Kimura F, Mashkour M, Tajvidi M (2014) One-dimensional core–shell cellulose-akaganeite hybrid nanocrystals: synthesis, characterization, and magnetic field induced self-assembly. RSC Adv 4:52542–52549

    Article  CAS  Google Scholar 

  24. Cerbelaud M, Videcoq A, Abelard P, Pagnoux C, Rossignol F, Ferrando R (2008) Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 24:3001–3008

    Article  CAS  Google Scholar 

  25. Zhbankov RG (1992) Hydrogen bonds and structure of carbohydrates. J Mol Struct 270:523–539

    Article  CAS  Google Scholar 

  26. Levdik IY, Nikitin VN, Petropavlovskii GA, Vasil’eva GS (1965) IR study of analytical and structural characteristics of low-substituted methylcellulose films. J Appl Spectrosc 3:269–272

    Article  Google Scholar 

  27. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry; Volume 1: Fundamentals and Analytical Methods. Wiley‐VCH Verlag GmbH, Weinheim

    Google Scholar 

  28. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396

    Article  CAS  Google Scholar 

  29. Khoshkava V, Kamal MR (2014) Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol 261:288–298

    Article  CAS  Google Scholar 

  30. De Salvi DT (2012) Self-supported bacterial cellulose/boehmite organic–inorganic hybrid films. J Sol-Gel Sci Technol 63:211–218

    Article  CAS  Google Scholar 

  31. He M, Duan B, Xu D, Zhang L (2015) Moisture and solvent responsive cellulose/SiO2 nanocomposite materials. Cellulose 22:553–563

    Article  CAS  Google Scholar 

  32. Khan R, Dhayal M (2008) Nanocrystalline bioactive TiO2-chitosan impedimetric immunosensor for ochratoxin-A. Electrochem Commun 10:492–495

    Article  CAS  Google Scholar 

  33. Zhou Z, Lu C, Wu X, Zhang X (2013) Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv 3:26066–26073

    Article  CAS  Google Scholar 

  34. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  35. Romanov DP, Baklagina YuG, Gubanova GN, Ugolkov VL, Lavrent’ev VK, Tkachenko AA, Sinyaev VA, Sukhanova TE, Khripunov AK (2010) Formation of organic-inorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications. Glass Phys Chem 36:484–493

    Article  CAS  Google Scholar 

  36. Liu S, Tao D, Bai H, Liu X (2012) Cellulose-nanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J Appl Polym Sci 126:E282–E290

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, grant No 16-33-108; Krivoshapkin P. V. is grateful to a Program of the Ural Branch of the Russian Academy of Sciences No 15-9-3-60. Most of the studies were carried out using the equipment of the Collective Use Center Khimiya, Institute of Chemistry, Komi Scientific Center, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Martakov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martakov, I.S., Torlopov, M.A., Mikhaylov, V.I. et al. Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation. J Sol-Gel Sci Technol 88, 13–21 (2018). https://doi.org/10.1007/s10971-017-4447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4447-3

Keywords

Navigation