Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 355–361 | Cite as

Photochemical solution deposition of β-Bi2O3 thin films

  • Dulce Perez-Mezcua
  • Iñigo Bretos
  • Ricardo Jiménez
  • Jesús Ricote
  • Rafael José Jiménez-Rioboó
  • Cosmelina Gonçalves da Silva
  • Daniel Chateigner
  • Luis Fuentes-Cobas
  • Rafael Sirera
  • M. Lourdes Calzada
Original Paper: Sol-gel, hybrids and solution chemistries
  • 202 Downloads

Abstract

The non-equilibrium β-Bi2O3 polymorph is stabilized in thin films by a photochemical synthesis method. A strong ultraviolet-absorbing bismuth(III)-N-methyldiethanolamine complex is synthesized in solution as an ideal precursor for the β-Bi2O3 phase. Ultraviolet-light induces the formation of an amorphous —Bi—O—Bi— continuous network in the films deposited from the former solution that easily converts into the β-Bi2O3 polymorph at a temperature as low as 250 °C. The room temperature stabilization of the β-Bi2O3 phase is confirmed by their structural characterization using four-circle X-ray diffractometry. This study unequivocally identified the tetragonal crystal structure of the β-Bi2O3 polymorph in the films. The high phase purity of these β-Bi2O3 films is responsible for their exceptional visible-light photocatalytic activity, thus enabling the applications of the films of this metastable phase at room-temperature conditions.

Graphical Abstract

Photosensitive precursor solutions containing a photosensitive Bi(III)-N-methyldiethanolamine complex lead to the stabilization of the high-temperature β-Bi2O3polymorph in films on Pt-coated silicon substrates prepared at a low temperature of 250 °C using UV-irradiation. Open image in new window

Keywords

Photochemistry Sol-gel Metastable phases β-Bi2O3 Room-temperature stabilization Thin films Low-temperature processing Thin films 

Notes

Acknowledgements

This work has been financed by the Spanish Project MAT2013-40489-P and MAT2016-76851-R. I.B. acknowledges the financial support by Fundación General CSIC (Spanish ComFuturoProgramme)

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    Mehring M (2007) From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coord Chem Rev 251(7–8):974CrossRefGoogle Scholar
  2. 2.
    Kharton VV, Naumovich EN, Yaremchenko AA, Marques MB (2001) Research on the electrochemistry of oxygen ion conductors in the former Soviet Union - IV. Bismuth oxide-based ceramics. J Solid State Electrochem 5:160CrossRefGoogle Scholar
  3. 3.
    Sanna S, Esposito V, Andreasen JW, Hjelm J, Zhang W, Kasama T, Simosen SB, Christensen M, Linderoth S, Pryds N (2015) Enhancement of the chemical stability in confined delta-Bi2O3. Nat Mater 14:500CrossRefGoogle Scholar
  4. 4.
    Switzer JA, Shumsky MG, Bohnnan EW (1999) Electrodeposited ceramic single crystals. Science 284:293CrossRefGoogle Scholar
  5. 5.
    Lunca Popa P, Sonderby S, Kerdsongpanya S, Lu J, Bonanos N, Eklund P (2013) Highly oriented delta-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering. J Appl Phys 113:046101CrossRefGoogle Scholar
  6. 6.
    Kim MG, Kanatzidis MG, Facchetti A, Marks TJ (2011) Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater 10:382CrossRefGoogle Scholar
  7. 7.
    Bretos I, Jiménez R, Wu A, Kingon A, Vilarinho PM, Calzada ML (2014) Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv Mater 26:1405CrossRefGoogle Scholar
  8. 8.
    Peng F, Ni Y, Zhou Q, Kou J, Lu C, Xu Z (2016) Fabrication of a flexible graphene-TiO2/PDMS photocatalytic film by combining air atmospheric pressure glow discharge treatment. Chem Eng Process 101:8CrossRefGoogle Scholar
  9. 9.
    Kim YH, Heo JS, Kim TH, Park S, Yoon MH, Kim J, Oh MS, Yi GR, Noh YY, Park SK (2012) Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489:128CrossRefGoogle Scholar
  10. 10.
    Bretos I, Jiménez R, Pérez-Mezcua D, Salazar N, Ricote J, Calzada ML (2015) Low-temperature liquid precursors of crystalline metal oxides assisted by eterogeneous photocatalysis. Adv Mater 27:2608CrossRefGoogle Scholar
  11. 11.
    Martín-Arbella N, Bretos I, Jiménez R, Calzada ML, Sirera R (2011) Metal complexes with N-methyldiethanolamine as new photosensitive precursors for the low-temperature preparation of ferroelectric thin films. J Mater Chem 21:9051CrossRefGoogle Scholar
  12. 12.
    Imai I (2004) Ultraviolet (UV) irradiation. In: Kozuka H, Sakka S (eds) Handbook of sol-gel science and technology: processing, characterization and applications, Vol. I – sol-gel processing, Kluwer Academic Publishers, New York, NY, p 639Google Scholar
  13. 13.
    Le Bris J, Hubert-Pfalzagraf LG, Daniele S, Vaissermann J (2007) Cost efficient synthesis of bismuth aminoalkoxides from bismuth oxide: Molecular structure of [Bi-2(mdea)(2)(mdeaH)(2)](mdeaH(2))(2). Inorg Chem Commun 10:80CrossRefGoogle Scholar
  14. 14.
    Perez-Mezcua D, Sirera R, Jimenez R, Bretos I, De Dobbelaere C, Hardy A, Van Bael MK, Calzada ML (2014) A UV-absorber bismuth(III)-N-methyldiethanolamine complex as a low-temperature precursor for bismuth-based oxide thin films. J Mater Chem C 2:8750CrossRefGoogle Scholar
  15. 15.
    Lu Y, Zhao Y, Zhao J, Song Y, Huang Z, Gao F, Li N, Li Y (2015) Induced aqueous synthesis of Metastable beta-Bi2O3 microcrystals for visible-light photocatalyst study. Cryst Growth Des 15:1081Google Scholar
  16. 16.
    Schlesinger M, Weber M, Schulze S, Hietschold M, Mehring M (2013) Metastable beta-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. Chemistry Open 2:146Google Scholar
  17. 17.
    Nathan A, Ahnood AA, Cole MT, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, García-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu D, Flewitt AJ, Amaratunga GAJ, Milne WI (2012) Flexible electronics: The next ubiquitous platform. Proceedings of the IEEE 100:1486CrossRefGoogle Scholar
  18. 18.
    Calzada ML (2015) Electroceramic thin films. In: Levy D, Zayat M (eds) The sol-gel handbook, Vol. 2 synthesis, characterization and applications. Wiley-VCH, Germany, p 841Google Scholar
  19. 19.
    Alguero M, Calzada ML, Quintana C, Pardo L (1999) Ferroelectricity of lanthanum-modified lead titanate thin films obtained by a diol-based sol-gel method. Appl Phys A 68(5):583CrossRefGoogle Scholar
  20. 20.
    Lutterotti L. Materials Analysis Using Diffraction. http://www.ing.unitn.it/~maud/Google Scholar
  21. 21.
    Calzada ML, Gonzalez A, Poyato R, Pardo L (2003) Photo-sensitive sol-gel solutions for the low-temperature UV-assisted processing of PbTiO3 based ferroelectric thin films. J Mater Chem 13:1451CrossRefGoogle Scholar
  22. 22.
    Calzada ML, Bretos I, Jimenez R, Guillon H, Pardo L (2004) Low-temperature processing of ferroelectric thin films compatible with silicon integrated circuit technology. Adv Mater 16(18):1620CrossRefGoogle Scholar
  23. 23.
    Bretos I, Jimenez R, Rodriguez-Castellon E, Garcia-Lopez J, Calzada ML (2008) Heterostructure and compositional depth profile of low-temperature processed lead titanate-based ferroelectric thin films prepared by photochemical solution deposition. Chem Mater 20(4):1443CrossRefGoogle Scholar
  24. 24.
    Chateigner D (ed): (2010) Combined analysis: structure-texture-microstructure-phase-stresses-reflectivity analysis by x-ray and neutron scattering, Wiley-ISTE, p 496Google Scholar
  25. 25.
    Grazulis S, Chateigner D, Downs RT, Yokochi AFT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database - an open-access collection of crystal structures. J Appl Cryst 42(4):726CrossRefGoogle Scholar
  26. 26.
    Pérez-Mezcua D (2016) Láminas delgadas de (Bi0.5Na0.5)1-xBaxTiO3 en torno a la frontera de fase morfotrópica preparadas por métodos de depósito químico y fotoquímico de disoluciones. PhD Thesis, University of Navarra (Spain)Google Scholar
  27. 27.
    Pérez-Mezcua D, Bretos I, Jiménez R, Jiménez-Rioboó R, Ricote J, Gonçalves da Silva C, Chateigner D, Fuentes-Cobas L, Sirera R and Calzada ML (2016) Scientific Reports 6:39561.Google Scholar
  28. 28.
    Harwig HA (1978) Structure of bismuthsesquioxide - Lpha, Beta,Gamma and Delta-Phase. Z anorg allg Chem 444:151CrossRefGoogle Scholar
  29. 29.
    Harwig HA, Weenk JW (1978) Phase relations in bismuthsesquioxide. Z anorg allg Chem 444:167CrossRefGoogle Scholar
  30. 30.
    Blower SK, Greaves C (1988) The structure of beta-Bi2O3 from powder neutron diffraction data. Acta Cryst C44:587Google Scholar
  31. 31.
    Hull S, Norberg ST, Tucker MG, Eriksson SG, Mohn CE and Stolen S (2009) Dalton Trans 40:8737Google Scholar
  32. 32.
    Locherer T, Dasari L, Prasad VK, Dinnebier R, Wedig U, Jansen M (2011) High-pressure structural evolution of HP-Bi2O3. Phys Rev B 83:214102CrossRefGoogle Scholar
  33. 33.
    Schlesinger M, Schulze S, Hietschold M, Mehring M (2013) Metastable beta-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters. Dalton Trans 42:1047CrossRefGoogle Scholar
  34. 34.
    Barrera-Mota K, Bizarro M, Castellino M, Tagliaferro A, Hernández A, Rodil SE (2015) Spray deposited beta-Bi2O3 nanostructured films with visible photocatalytic activity for solar water treatment. Photochem Photobiol Sci 14:1110CrossRefGoogle Scholar
  35. 35.
    Wang J, Yang X, Zhao K, Xu P, Zong L, Yu R, Wang D, Deng J, Chen J, Xing X (2013) Precursor-induced fabrication of beta-Bi2O3 microspheres and their performance as visible-light-driven photocatalysts. J Mater Chem A 1:9069CrossRefGoogle Scholar
  36. 36.
    Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T (2010) Exceptional photocatalytic activity of ordered mesoporous beta-Bi2O3 thin films and lectrospun nanofiber mats. Chem Mater 22:3079CrossRefGoogle Scholar
  37. 37.
    Xiao X, Hu R, Liu C, Xing C, Qian C, Zuo X, Nan J, Wang L (2013) Facile large-scale synthesis of beta-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Appl Catal B: Environmental 140:433CrossRefGoogle Scholar
  38. 38.
    Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J (2015) An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv Sci 2:1300006CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dulce Perez-Mezcua
    • 1
    • 2
  • Iñigo Bretos
    • 1
  • Ricardo Jiménez
    • 1
  • Jesús Ricote
    • 1
  • Rafael José Jiménez-Rioboó
    • 1
  • Cosmelina Gonçalves da Silva
    • 3
  • Daniel Chateigner
    • 3
  • Luis Fuentes-Cobas
    • 4
  • Rafael Sirera
    • 2
  • M. Lourdes Calzada
    • 1
  1. 1.Instituto de Ciencia de Materiales de MadridConsejo Superior de Investigaciones Científicas (ICMM-CSIC)CantoblancoSpain
  2. 2.Departamento de Química, Facultad de CienciasUniversidad de NavarraPamplona Spain
  3. 3.CRISMAT—ENSICAEN and IUT-CaenUniversité de Caen NormandieCaen France
  4. 4.Centro de Investigación en Materiales AvanzadosChihuahua Mexico

Personalised recommendations